Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447251

RESUMO

Obesity is an inflammatory disease associated with secondary diseases such as kidney disease, which can cause lipotoxicity, inflammation and loss of organ function. Polyunsaturated fatty acids act in the production of lipid mediators and have anti-inflammatory characteristics. In this work, the objective was to evaluate renal histopathology in obese mice and the effects of treatment with capybara oil (CO) (5000 mg/kg/day for 4 weeks). Parameters such as body mass, lipid profile, systolic blood pressure, urinary creatinine and protein excretion, structure and ultrastructure of the renal cortex, fibrosis, tissue inflammation and oxidative stress were analyzed. CO treatment in obese mice showed improvement in the lipid profile and reduction in systolic blood pressure levels, in addition to beneficial remodeling of the renal cortex. Our data demonstrated that CO decreased inflammation, oxidative stress and renal fibrosis, as evidenced by quantifying the expression of TNF-α, IL-10, CAT, SOD, α-SMA and TGF-ß. Although treatment with CO did not show improvement in renal function, ultrastructural analysis showed that the treatment was effective in restoring podocytes and pedicels, with restructuring of the glomerular filtration barrier. These results demonstrate, for the first time, that treatment with CO is effective in reducing kidney damage, being considered a promising treatment for obesity.


Assuntos
Nefropatias , Roedores , Camundongos , Animais , Camundongos Obesos , Rim/metabolismo , Inflamação/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/etiologia , Nefropatias/metabolismo , Estresse Oxidativo , Obesidade/metabolismo , Fibrose , Lipídeos/farmacologia
2.
J Orthop Res ; 39(10): 2077-2082, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33270292

RESUMO

Posttraumatic osteonecrosis of the femoral head (ONFH) affects patients at different ages and may lead to functional limitation and joint replacement, with total hip arthroplasty, which is a costly procedure. Proposed methods to optimize ischemic tissue regeneration have been reported. Phosphodiesterase-5 inhibitors act by inhibiting the degradation of guanosine 3',5'-cyclic monophosphate in the nitric oxide pathway, increasing its bioavailability and promoting vascular endothelial growth factor (VEGF)-mediated neovascular recruitment and the induction of tissue regeneration in the traumatized bone. Thirty male Sprague-Dawley rats (6 months old) were subjected to an experimental model of traumatic ONFH divided into two groups, according to the administration of 5 mg/kg sildenafil or water (control group). Rats were then killed at 7, 14, and 21 days. Histological (Goldner's trichrome), histochemical (periodic acid-Schiff [PAS]), and immunohistochemical (VEGF and osteopontin [OPN]) techniques were used to quantify bone and vascular responses. Higher levels of VEGF (p < 0.01) and OPN (p < 0.01) immunostaining in the epiphysis, the greater formation of osteoid tissue (p < 0.01 on Day 7; p < 0.05 on Day 14), and higher levels of PAS staining (p < 0.01 on Day 7) were observed in the sildenafil-treated group. The present study demonstrated that sildenafil optimized bone tissue regeneration by increasing VEGF signaling and OPN expression, with increased bone formation (osteoid and carbohydrate macromolecule deposition) in the early stages following traumatic ischemic insult. Thus, sildenafil treatment may improve the prognosis of patients with osteonecrosis.


Assuntos
Necrose da Cabeça do Fêmur , Cabeça do Fêmur , Animais , Regeneração Óssea , Nucleotídeo Cíclico Fosfodiesterase do Tipo 5 , Cabeça do Fêmur/patologia , Necrose da Cabeça do Fêmur/tratamento farmacológico , Necrose da Cabeça do Fêmur/patologia , Humanos , Isquemia , Masculino , Ratos , Ratos Sprague-Dawley , Citrato de Sildenafila/farmacologia , Citrato de Sildenafila/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Int J Hypertens ; 2020: 7684849, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33145109

RESUMO

Hypertension is a disease classified as primary or secondary, manifested not only by elevation of blood pressure but also involved in structural and functional changes of target organs. Renal artery stenosis is a leading factor of secondary hypertension, and its progress is associated with overactivation of the renin-angiotensin-aldosterone system (RAAS). Aliskiren is a renin inhibiting drug that suppresses RAAS and culminates in decreased renin release, plasma angiotensin II concentration, and inhibition of aldosterone secretion. In this sense, the aim of the present study was to analyze the structural and ultrastructural morphophysiology of the adrenal glomerular zone, after treatment with aliskiren in Wistar rats with 2K1C hypertension. Parameters as structure and ultrastructure of the adrenal glomerular zone, cellular apoptosis, nuclear cell proliferation, and AT1 receptor expression were analyzed by immunostaining and electron microscopy. Our results showed that the hypertensive animals treated with aliskiren presented a reestablishment of AT1 receptor expression and decrease in apoptosis and autophagy. In addition, treatment with aliskiren improves the cell aspects in the adrenal glomerular zone, evidenced by ultrastructural analysis through preserved nuclei and well-developed mitochondria. Therefore, our evidence suggests that aliskiren has a beneficial effect on the adrenal glomerular zone remodeling in animals with renovascular hypertension.

4.
Histol Histopathol ; 35(6): 609-621, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31625581

RESUMO

Hypertension is characterized by persistent elevated blood pressure levels, one of the leading causes of death in the world. Renovascular hypertension represents the most common cause of secondary hypertension, and its progress is associated with overactivation of the renin angiotensin aldosterone system (RAAS), causing systemic and local changes. Aliskiren is a renin-inhibiting drug that optimizes RAAS suppression. In this sense, the objective of the present study was to analyze the morphophysiology of the left kidney in Wistar rats with renovascular hypertension after treatment with Aliskiren. Parameters such as systolic blood pressure, urinary creatinine and protein excretion, renal cortex structure and ultrastructure, fibrosis and tissue inflammation were analyzed. Our results showed that the hypertensive animals treated with Aliskiren presented a reestablishment of blood pressure, expression of renin, and renal function, as well as a remodeling of morphological alterations through the reduction of fibrosis. The treatment regulated the laminin expression and decreased pro-inflammatory cytokines, restoring the integrity of the glomerular filtration barrier. Therefore, our findings suggest that Aliskiren has a renoprotective effect acting on the improvement of the morphology, physiology and pathology of the renal cortex of animals with renovascular hypertension.


Assuntos
Amidas/farmacologia , Fumaratos/farmacologia , Hipertensão Renovascular/tratamento farmacológico , Sistema Renina-Angiotensina/efeitos dos fármacos , Animais , Anti-Hipertensivos/farmacologia , Modelos Animais de Doenças , Fibrose/patologia , Hipertensão Renovascular/patologia , Inflamação/patologia , Rim/patologia , Rim/fisiologia , Rim/ultraestrutura , Ratos
5.
Artigo em Inglês | MEDLINE | ID: mdl-29853957

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is recognized as the most common cause of liver dysfunction worldwide and is commonly associated with obesity. Evidences suggest that NAFLD might be a mitochondrial disease, which contributes to the hepatic steatosis, oxidative stress, cytokine release, and cell death. Capybara oil (CO) is a rich source of polyunsaturated fatty acids (PUFA), which is known to improve inflammation and oxidative stress. In order to determine the effects of CO on NAFLD, C57Bl/6 mice were divided into 3 groups and fed a high-fat diet (HFD) (NAFLD group and NAFLD + CO group) or a control diet (CG group) during 16 weeks. The CO (1.5 g/kg/daily) was administered by gavage during the last 4 weeks of the diet protocol. We evaluated plasma liver enzymes, hepatic steatosis, and cytokine expression in liver as well as hepatocyte ultrastructural morphology and mitochondrial function. CO treatment suppressed hepatic steatosis, attenuated inflammatory response, and decreased plasma alanine aminotransferase (ALT) in mice with NAFLD. CO was also capable of restoring mitochondrial ultrastructure and function as well as balance superoxide dismutase and catalase levels. Our findings indicate that CO treatment has positive effects on NAFLD improving mitochondrial dysfunction, steatosis, acute inflammation, and oxidative stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA