Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(1): e0168495, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28052077

RESUMO

The temporal activity of animals is an outcome of both biotic and abiotic factors, which may vary along the geographic range of the species. Therefore, studies conducted with a species in different localities with distinct features could elucidate how animals deal with such factors. In this study, we used live traps equipped with timing devices to investigate the temporal activity patterns of the didelphid Gracilinanus agilis in two dry-woodland areas of the Brazilian savanna (Cerrado). These areas were located about 660 km apart, one in Central Brazil and the other in Southeastern Brazil. We compared such patterns considering both reproductive and non-reproductive periods, and how it varies as a function of temperature on a seasonal basis. In Central Brazil, we found a constant, and temperature-independent activity during the night in both reproductive and non-reproductive periods. On the other hand, in Southeastern Brazil, we detected a constant activity during the reproductive period, but in the non-reproductive period G. agilis presented a peak of activity between two and four hours after sunset. Moreover, in this latter we found a relation between temporal activity and temperature during the autumn and spring. These differences in temporal activity between areas, observed during the non-reproductive period, might be associated with the higher seasonal variability in temperature, and lower mean temperatures in the Southeastern site in comparison to the Central one. In Southeastern Brazil, the decrease in temperature during the non-reproductive season possibly forced G. agilis to be active only at certain hours of the night. However, likely due to the reproductive activities (intensive foraging and searching for mates) this marsupial showed constant, temperature-independent activity during the night in the reproductive period at both sites.


Assuntos
Geografia , Marsupiais/fisiologia , Clima Tropical , Animais , Ecossistema , Modelos Logísticos , Chuva , Reprodução , Estações do Ano , Temperatura , Fatores de Tempo
2.
Oecologia ; 180(2): 313-24, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26104275

RESUMO

According to classic ecology, resource partitioning by segregation along at least one of the three main niche axes (time, food, and space) must take place for the coexistence of species with similar ecological requirements. We used nocturnal light traps to investigate the assemblage structuration of two moth families: Sphingidae (23 species) and Saturniidae (13 species). Because competition for food among adults potentially occurs only among sphingids, only for this family did we expect less overlap of diel activity patterns than expected by chance and also a greater temporal niche width compared to saturniids. Moreover, we expected a greater number of sphingid species pairs to differ in activity timing compared to saturniid pairs. We also hypothesized that in the case of a lack of temporal structuration, sphingids would be morphologically structured in relation to proboscis length. Contrary to what we expected, both families overlapped their activity patterns more than expected by chance alone and sphingid moths were not morphologically structured. Nevertheless, there were 173 significant pairwise differences in temporal activity between sphingids, contrasting with no interspecific differences between saturniids. Sphingid species also showed a wider temporal niche width than saturniids, as expected. Predation risk and abiotic factors may have caused the overall similarities in activity patterns for both families. The temporal niche seemed not to be determinant for the assemblage structuration of moths as a whole for either of the studied families, but segregation along the temporal niche axis of some potentially competing species pairs can be a relevant factor for the coexistence of nectar-feeding species.


Assuntos
Ecossistema , Mariposas/fisiologia , Comportamento Predatório/fisiologia , Animais , Tempo
3.
PLoS One ; 7(11): e49734, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166759

RESUMO

Competition is one of the most cited mechanisms to explain secondary sexual dimorphism in animals. Nonetheless, it has been proposed that sexual dimorphism in bat wings is also a result of adaptive pressures to compensate additional weight caused by fetus or pup carrying during the reproductive period of females. The main objective of this study is to verify the existence of sexual dimorphism in Sturnira lilium wings. We employed geometric morphometrics techniques using anatomical landmarks superimposition to obtain size (Centroid Size) and shape variables of wings, which were reduced by Linear Discriminant Analysis (LDA). We also employed classical morphometrics using wing length measurements to compare efficiency between these two morphometric approaches and make comparisons using wing area measurements. LDA indicated significant differences between wing shapes of males and females, with 91% (stepwise classification) and 80% (leave-one-out cross validation) of correct classification. However, the size variable obtained did not contribute to such classifications. We have observed larger areas in female wings, but we found no differences in wing length measurements and no allometric effects in wing length, shape and area measurements. Interestingly, our study has provided evidences of morphological differences where classical morphometrics have failed. LDA and area measurements analyses revealed that females have a different area distribution in distinct portions of the wing, with wider dactylopatagia and plagiopatagia, and wingtips more triangular than males. No differences in body length or relative wing length were observed between the sexes, but pregnant females have more body weight than non-pregnant females and males. Our findings suggest that sexual dimorphism in the wing shape of S. lilium is probably related to the increase in flight efficiency of females during reproductive period. It decreases wing loading in specific portions of the wing and reduces energy cost to maintain a faster and maneuverable flight.


Assuntos
Quirópteros/anatomia & histologia , Caracteres Sexuais , Asas de Animais/anatomia & histologia , Adaptação Biológica , Animais , Tamanho Corporal , Feminino , Masculino , Gravidez , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA