Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(8)2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-36016268

RESUMO

Yellow Fever disease is caused by the Yellow Fever virus (YFV), an arbovirus from the Flaviviridae family. The re-emergence of Yellow Fever (YF) was facilitated by the increasing urbanization of sylvatic areas, the wide distribution of the mosquito vector, and the low percentage of people immunized in the Americas, which caused severe outbreaks in recent years, with a high mortality rate. Therefore, serological approaches capable of discerning antibodies generated from the wild-type (YFV-WT) strain between the vaccinal strain (YFV-17DD) could facilitate vaccine coverage surveillance, enabling the development of strategies to avoid new outbreaks. In this study, peptides were designed and subjected to microarray procedures with sera collected from individuals infected by WT-YFV and 17DD-YFV of YFV during the Brazilian outbreak of YFV in 2017/2018. From 222 screened peptides, around ten could potentially integrate serological approaches aiming to differentiate vaccinated individuals from naturally infected individuals. Among those peptides, one was synthesized and validated through ELISA.


Assuntos
Peptídeos , Vacina contra Febre Amarela , Febre Amarela , Anticorpos/sangue , Humanos , Peptídeos/sangue , Peptídeos/imunologia , Febre Amarela/sangue , Febre Amarela/epidemiologia , Febre Amarela/prevenção & controle , Vacina contra Febre Amarela/imunologia
2.
Parasit Vectors ; 8: 31, 2015 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-25595203

RESUMO

BACKGROUND: Leishmania enriettii is a species non-infectious to man, whose reservoir is the guinea pig Cavia porcellus. Many aspects of the parasite-host interaction in this model are unknown, especially those involving parasite surface molecules. While lipophosphoglycans (LPGs) and glycoinositolphospholipids (GIPLs) of Leishmania species from the Old and New World have already been described, glycoconjugates of L. enriettii and their importance are still unknown. METHODS: Mice peritoneal macrophages from C57BL/6 and knock-out (TLR2 -/-, TLR4 -/-) were primed with IFN-γ and stimulated with purified LPG and GIPLs from both species. Nitric oxide and cytokine production were performed. MAPKs (p38 and JNK) and NF-kB activation were evaluated in J774.1 macrophages and CHO cells, respectively. RESULTS: LPGs were extracted, purified and analysed by western-blot, showing that LPG from L88 strain was longer than that of Cobaia strain. LPGs and GIPLs were depolymerised and their sugar content was determined. LPGs from both strains did not present side chains, having the common disaccharide Gal(ß1,4)Man(α1)-PO4. The GIPL from L88 strain presented galactose in its structure, suggestive of type II GIPL. On the other hand, the GIPL of Cobaia strain presented an abundance of glucose, a characteristic not previously observed. Mice peritoneal macrophages from C57BL/6 and knock-outs (TLR2 -/- and TLR4 -/-) were primed with IFN-γ and stimulated with glycoconjugates and live parasites. No activation of NO or cytokines was observed with live parasites. On the other hand, LPGs and GIPLs were able to activate the production of NO, IL-6, IL-12 and TNF-α preferably via TRL2. However, in CHO cells, only GIPLs were able to activate TRL2 and TRL4. In vivo studies using male guinea pigs (Cavia porcellus) showed that only strain L88 was able to develop more severe ulcerated lesions especially in the presence of salivary gland extract (SGE). CONCLUSION: The two L. enriettii strains exhibited polymorphisms in their LPGs and GIPLs and those features may be related to a more pro-inflammatory profile in the L88 strain.


Assuntos
Glicolipídeos/metabolismo , Glicoesfingolipídeos/metabolismo , Leishmania enriettii/fisiologia , Leishmaniose/parasitologia , Fosfolipídeos/metabolismo , Animais , Células CHO , Cricetulus , Reservatórios de Doenças , Cobaias , Macrófagos Peritoneais/parasitologia , Masculino , Camundongos , Óxido Nítrico , Psychodidae/parasitologia
3.
Parasit Vectors ; 6: 54, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23497381

RESUMO

BACKGROUND: The dominant, cell surface lipophosphoglycan (LPG) of Leishmania is a multifunctional molecule involved in the interaction with vertebrate and invertebrate hosts. Although the role of LPG on infection has been extensively studied, it is not known if LPG interspecies variations contribute to the different immunopathologies of leishmaniases. To investigate the issue of interspecies polymorphisms, two Leishmania species from the New World that express structural variations of side chains of LPG repeat units were examined. In this context, the procyclic form of L. braziliensis LPG (strain M2903), is devoid of side chains, while the L. infantum LPG (strain BH46) has up to three glucoses residues in the repeat units. METHODS: Mice peritoneal macrophages from Balb/c, C57BL/6 and knock-out (TLR2 -/-, TLR4 -/-) were primed with IFN-γ and stimulated with purified LPG from both species. Nitric oxide and cytokine production, MAPKs (ERK, p38 and JNK) and NF-kB activation were evaluated. RESULTS: Macrophages stimulated with L. braziliensis LPG, had a higher TNF-α, IL-1ß, IL-6 and NO production than those stimulated with that of L. infantum. Furthermore, the LPGs from the two species resulted in differential kinetics of signaling via MAPK activation. L. infantum LPG exhibited a gradual activation profile, whereas L. braziliensis LPG showed a sharp but transient activation. L. braziliensis LPG was able to activate NF-kB. CONCLUSION: These data suggest that two biochemically distinct LPGs were able to differentially modulate macrophage functions.


Assuntos
Glicoesfingolipídeos/imunologia , Leishmania braziliensis/imunologia , Leishmania infantum/imunologia , Leishmaniose Cutânea/imunologia , Leishmaniose Visceral/imunologia , Macrófagos Peritoneais/imunologia , Animais , Células CHO , Cricetinae , Cricetulus , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica , Glicoesfingolipídeos/química , Glicoesfingolipídeos/isolamento & purificação , Interações Hospedeiro-Parasita , Imunidade Inata , Leishmania braziliensis/metabolismo , Leishmania infantum/metabolismo , Leishmaniose Cutânea/parasitologia , Leishmaniose Visceral/parasitologia , Sistema de Sinalização das MAP Quinases/imunologia , Macrófagos Peritoneais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/imunologia , NF-kappa B/metabolismo , Nitritos/imunologia , Nitritos/metabolismo
4.
Biochim Biophys Acta ; 1820(9): 1354-65, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22093608

RESUMO

BACKGROUND: Protozoan parasites of the genus Leishmania cause a number of important diseases in humans and undergo a complex life cycle, alternating between a sand fly vector and vertebrate hosts. The parasites have a remarkable capacity to avoid destruction in which surface molecules are determinant for survival. Amongst the many surface molecules of Leishmania, the glycoconjugates are known to play a central role in host-parasite interactions and are the focus of this review. SCOPE OF THE REVIEW: The most abundant and best studied glycoconjugates are the Lipophosphoglycans (LPGs) and glycoinositolphospholipids (GIPLs). This review summarizes the main studies on structure and biological functions of these molecules in New World Leishmania species. MAJOR CONCLUSIONS: LPG and GIPLs are complex molecules that display inter- and intraspecies polymorphisms. They are key elements for survival inside the vector and to modulate the vertebrate immune response during infection. GENERAL SIGNIFICANCE: Most of the studies on glycoconjugates focused on Old World Leishmania species. Here, it is reported some of the studies involving New World species and their biological significance on host-parasite interaction. This article is part of a Special Issue entitled Glycoproteomics.


Assuntos
Glicoconjugados/fisiologia , Glicoesfingolipídeos/genética , Glicosilfosfatidilinositóis/genética , Interações Hospedeiro-Parasita , Leishmania , Leishmaniose Cutânea/genética , Leishmaniose Cutânea/parasitologia , Animais , Sequência de Carboidratos , Glicoconjugados/análise , Glicoconjugados/genética , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Humanos , Leishmania/química , Leishmania/genética , Leishmania/metabolismo , Leishmania/fisiologia , Modelos Biológicos , Dados de Sequência Molecular , Polimorfismo Genético/fisiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA