Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 43(3): 507-514, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31709470

RESUMO

Laccases are very interesting biocatalysts of recognized importance for several industrial applications. Its production by Trametes versicolor, a white-rot fungus, was induced by a combination of cotton gin wastes (1%), a lignocellulosic waste, and vinasse (15%), an industrial by-product from sugarcane industry. The use of these agro-industrial wastes are interesting, since it helps in reducing the enzyme production costs, due to their low cost and wide availability, as well as the environmental contamination issues, due to their improper disposal. Thus, laccase production was studied in submerged fermentation of T. versicolor using these agro-industrial wastes (cotton gin waste and vinasse) as carbon source and an additional nitrogen source (0.1% peptone). Three different bioreactors were evaluated for laccase production, such as BioFlo 310 bioreactor, aluminium tray and Erlenmeyer flasks to achieve high levels of laccase production. The highest specific production of laccase was found in BioFlo 310 bioreactor with 12 days of fermentation (55.24 U/mg prot.), which has been shown to be closely related to the oxygen supply to the microorganism through aeration of the fermentation medium. This study brings new insights into green biotechnology regarding vinasse utilization, which is frequently discharged in soils, rivers, and lakes causing adverse effects on agricultural soils and biota, as well as the cotton gin waste recovery.


Assuntos
Agricultura , Reatores Biológicos , Lacase/biossíntese , Trametes/enzimologia
2.
Bioelectrochemistry ; 130: 107331, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31349191

RESUMO

Electrochemical ethanol oxidation was performed at an innovative hybrid architecture electrode containing TEMPO-modified linear poly(ethylenimine) (LPEI) and oxalate oxidase (OxOx) immobilized on carboxylated multi-walled carbon nanotubes (MWCNT-COOH). On the basis of chromatographic results, the catalytic hybrid electrode system completely oxidized ethanol to CO2 after 12 h of electrolysis. The fact that the developed system can catalyze ethanol electrooxidation at a carbon electrode confirms that organic oxidation catalysts combined with enzymatic catalysts allow up to 12 electrons to be collected per fuel molecule. The Faradaic efficiency of the hybrid system investigated herein lies above 87%. The combination of OxOx with TEMPO-LPEI to obtain a novel hybrid anode to oxidize ethanol to carbon dioxide constitutes a simple methodology with useful application in the development of enzymatic biofuel cells.


Assuntos
Eletrólise , Etanol/química , Dióxido de Carbono/química , Catálise , Óxidos N-Cíclicos/química , Eletrodos , Eletrólise/métodos , Enzimas Imobilizadas/química , Nanotubos de Carbono/química , Oxirredução , Oxirredutases/química , Polietilenoimina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA