RESUMO
Electrical stimulation of the dorsal periaqueductal grey matter (DPAG) and deep layers of the superior colliculus (DLSC) of the rat elicits anxiety-like reactions such as freezing and flight. The temporal course of the effects of the aversive electrical stimulation of the DPAG (5, 15 and 30 min afterward) and DLSC (5, 10 and 15 min afterward) on the defensive response of rats exposed to elevated T-maze were determined. The elevated T-maze generates two defensive behaviors, inhibitory avoidance and one-way escape, which have been related, respectively, to generalized anxiety and panic disorders. Prior electrical stimulation of the DPAG (15 min) and DLSC (5 min) enhanced inhibitory avoidance when compared to no-operated and sham animals, although not affecting escape. Therefore, stimulation of the DPAG and DLSC causes a heightened responsivity to anxiogenic stimulus, but not to panicogenic stimulus, inherent to elevated T-maze. These findings support the participation of the DPAG and DLSC in the elaboration of adaptive responses to stressful situations. Besides, the data supports the view that prior electrical stimulation of DPAG and DLSC is selective in sensitizing rats to anxiety-like behaviors, but not to panic-like behaviors in the elevated T-maze test.