Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pathogens ; 10(6)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198542

RESUMO

Chagas disease is caused by the parasite Trypanosoma cruzi, which is transmitted by insect-vectors in the taxonomic subfamily Triatominae and affects approximately 8,000,000 people world-wide. Current mitigation strategies for Chagas focus on insecticides, infrastructure improvements, and management of symptoms, which are largely unsustainable in underserved communities where the disease is widespread. Transmission patterns of vector-borne diseases are known to adaptively respond to habitat change; as such, the objective of our study was to evaluate how the physical characteristics of Triatoma dimidiata would vary in relation to land use in El Salvador. We hypothesized that the color and morphology of T. dimidiata would change with municipal levels of urban and natural green space, natural green space, and agricultural space, as well as municipal diversity, richness, and evenness of land use types. Our results characterize how T. dimidiata color and morphology vary directly with anthropogenic changes to natural and agricultural environments, which are reflective of a highly adaptable population primed to respond to environmental change. Mitigation studies of Chagas disease should exploit the relationships between anthropogenic land use and T. dimidiata morphology to evaluate how the transmission pattern of T. cruzi and Chagas disease symptomology are impacted.

2.
Am J Trop Med Hyg ; 93(1): 97-107, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25870430

RESUMO

The interruption of vectorial transmission of Chagas disease by Triatoma dimidiata in central America is a public health challenge that cannot be resolved by insecticide application alone. In this study, we collected information on previously known household risk factors for infestation in 11 villages and more than 2,000 houses in Guatemala, Honduras, and El Salvador, and we constructed multivariate models and used multimodel inference to evaluate their importance as predictors of infestation in the region. The models had moderate ability to predict infested houses (sensitivity, 0.32-0.54) and excellent ability to predict noninfested houses (specificity higher than 0.90). Predictive ability was improved by including random village effects and presence of signs of infestation (insect feces, eggs, and exuviae) as fixed effects. Multimodel inference results varied depending on factors included, but house wall materials (adobe, bajareque, and palopique) and signs of infestation were among the most important predictive factors. Reduced models were not supported suggesting that all factors contributed to predictions. Previous knowledge and information from this study show that we have evidence to prioritize rural households for improvement to prevent house infestation with Triatoma dimidiata in Central America. House improvement will most likely have other health co-benefits.


Assuntos
Doença de Chagas/transmissão , Materiais de Construção , Habitação , Higiene , Controle de Insetos , Insetos Vetores/parasitologia , Triatoma/parasitologia , Animais , El Salvador , Características da Família , Guatemala , Honduras , Humanos , Gado , Modelos Logísticos , Análise Multivariada , Doenças Negligenciadas , Fatores de Risco , População Rural , Trypanosoma cruzi
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA