Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 283: 127689, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493529

RESUMO

The replacement of agrochemicals by biomolecules is imperative to mitigate soil contamination and inactivation of its core microbiota. Within this context, this study aimed at the interaction between a biological control agent such as Trichoderma harzianum CCT 2160 (BF-Th) and the biosurfactants (BSs) derived from the native Brazilian yeast Starmerella bombicola UFMG-CM-Y6419. Thereafter, their potential in germination of Oryza sativa L. seeds was tested. Both bioproducts were produced on site and characterized according to their chemical composition by HPLC-MS and GC-MS for BSs and SDS-PAGE gel for BF-Th. The BSs were confirmed to be sophorolipids (SLs) which is a well-studied compound with antimicrobial activity. The biocompatibility was examined by cultivating the fungus with SLs supplementation ranging from 0.1 to 2 g/L in solid and submerged fermentation. In solid state fermentation the supplementation of SLs enhanced spore production, conferring the synergy of both bioproducts. For the germination assays, bioformulations composed of SLs, BF-Th and combined (SLT) were applied in the germination of O. sativa L seeds achieving an improvement of up to 30% in morphological aspects such as root and shoot size as well as the presence of lateral roots. It was hypothesized that SLs were able to regulate phytohormones expression such as auxins and gibberellins during early stage of growth, pointing to their novel plant-growth stimulating properties. Thus, this study has pointed to the potential of hybrid bioformulations composed of biosurfactants and active endophytic fungal spores in order to augment the plant fitness and possibly the control of diseases.


Assuntos
Hypocreales , Ácidos Oleicos , Trichoderma , Brasil , Leveduras
2.
World J Microbiol Biotechnol ; 39(7): 195, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171665

RESUMO

Microbial bioemulsifiers are molecules of amphiphilic nature and high molecular weight that are efficient in emulsifying two immiscible phases such as water and oil. These molecules are less effective in reducing surface tension and are synthesized by bacteria, yeast and filamentous fungi. Unlike synthetic emulsifiers, microbial bioemulsifiers have unique advantages such as biocompatibility, non-toxicity, biodegradability, efficiency at low concentrations and high selectivity under different conditions of pH, temperature and salinity. The adoption of microbial bioemulsifiers as alternatives to their synthetic counterparts has been growing in ongoing research. This article analyzes the production of microbial-based emulsifiers, the raw materials and fermentation processes used, as well as the scale-up and commercial applications of some of these biomolecules. The current trend of incorporating natural compounds into industrial formulations indicates that the search for new bioemulsifiers will continue to increase, with emphasis on performance improvement and economically viable processes.


Assuntos
Bactérias , Emulsificantes , Bactérias/genética , Fermentação , Peso Molecular , Tensoativos
3.
Colloids Surf B Biointerfaces ; 207: 112029, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34399158

RESUMO

Sophorolipids (SLs) constitute a group of unique biosurfactants (BS) in the light of their outstanding properties, among which their antimicrobial activities stand out. SLs can exist mainly in an acidic and a lactonic form, both of which display inhibitory activity. Given the amphipathic nature of SLs it is feasible that these antimicrobial actions are the result of the perturbation of the physicochemical properties of targeted membranes. Thus, in this work we have carried out a biophysical study to unveil the molecular details of the interaction of an acidic SL with a model phospholipid membrane made of 1,2-dipalmitoy-sn-glycero-3-phosphocholine (DPPC). Using differential scanning calorimetry it was found that SL altered the phase behaviour of DPPC at low molar fractions, producing fluid phase immiscibility with the result of formation of biosurfactant-enriched domains within the phospholipid bilayer. Fourier-transform infrared spectroscopy showed that SL interacted with DPPC increasing ordering of the phospholipid acyl chain palisade and hydration of the lipid/water interface. Small angle X-ray scattering showed that SL did not modify bilayer thickness in the biologically relevant Lα fluid phase. SL was found to induce contents leakage in 1-palmitoy-2-oleoy-sn-glycero-3-phosphocholine (POPC) unilamellar liposomes, at sublytic concentrations below the cmc. This SL-induced membrane permeabilization at concentrations below the onset for membrane solubilization can be the result of the formation of laterally segregated domains, which might contribute to provide a molecular basis for the reported antimicrobial actions of SLs.


Assuntos
Lecitinas , Fosfatidilcolinas , Varredura Diferencial de Calorimetria , Bicamadas Lipídicas , Membranas , Ácidos Oleicos , Fosfolipídeos
4.
Appl Microbiol Biotechnol ; 105(6): 2319-2332, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33599793

RESUMO

The potential utilization of corn bran acid hydrolysate (CBAH) was evaluated as an inexpensive feedstock for the production of a rich carbohydrate and protein medium for lasiodiplodan (LAS) production using the filamentous fungus Lasiodiplodia theobromae CCT 3966. Experiments were performed according to a 22 CCRD experimental design aiming to evaluate the influence of agitation speed (rpm) and temperature (°C) over the production of total cell biomass (TCB) and LAS concentration released to the medium (LAS-M), adhered to biomass (LAS-C), and total (LAS-T). Under the selected conditions (temperature of 28°C and agitation of 200 rpm), 8.73 g·L-1 of LAS-T and 4.47 g·L-1 of TCB were obtained. Recovery of LAS-C with hot water was shown as an alternative to increase the production concentration, although it might require further purification steps. CBAH potential for substitution of synthetic media was demonstrated, indicating that it is an adequate raw material containing all necessary nutrients for LAS production.Key points• Corn bran acid hydrolysate is presented as a suitable substrate for ß-glucan production.• Lasiodiplodia theobromae CCT 3966 have the potential for the industrial ß-glucan production.• Simple recovering of biomass-adhered lasiodiplodan by hot water extraction.


Assuntos
Ascomicetos , beta-Glucanas , Biomassa , Zea mays
5.
Metabolites ; 10(12)2020 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-33322101

RESUMO

The production of biomolecules using agro-industrial by-products as feedstock is a growing trend worldwide. Selenium (Se) is a trace element essential for health, and the Se-enrichment of yeast biomass can enhance its benefits. This study investigated the feasibility of the production of Saccharomyces cerevisiae Se-enriched biomass using a medium composed of corn bran and soybean bran acid hydrolysates as carbon and nitrogen sources in a stirred-tank reactor. After hydrolysis, hydrolysates presented complex composition and high concentrations of sugars, proteins, and minerals. The use of a stirred-tank bioreactor leads to the production of 9 g/L S. cerevisiae biomass enriched with 236.93 µg/g Se, and 99% cell viability. Likewise, the combination of sugarcane molasses and soybean bran hydrolysate was effective for cell growth of a probiotic strain of S. cerevisiae with a 24.08% ß-glucan content. The results demonstrated that starchy acid hydrolysates are low-cost and efficient substrates for the production of yeast biomass and derivate products and may contribute to further studies for a sustainable development of biorefinery technologies.

6.
Crit Rev Biotechnol ; 39(7): 924-943, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31311338

RESUMO

Recent advances in biomass conversion technologies have shown a promising future toward fermentation during xylitol production. Xylitol is one of the top 12 renewable added-value chemicals that can be obtained from biomass according to US Department of Energy (USDOE). Currently, xylitol accounts for approximately US$823.6 million of annual sales in the market, and this amount is expected to reach US$1.37 billion by 2025. This high demand has been achieved owing to the chemical conversion of hemicellulosic hydrolysates from different lignocellulosic biomasses, which is a costly and non-ecofriendly process. Xylose-rich hemicellulosic hydrolysates are the major raw materials for xylitol production through either chemical or biotechnological routes. Economic production of a clean hemicellulosic hydrolysate is one of the major bottlenecks for xylitol production on the commercial scale. Advancements in biotechnology, such as the isolation of novel microorganisms, genetic manipulation of xylose metabolizing strains, and modifications in the fermentation process, can enhance the economic feasibility of xylitol production on the large scale. Furthermore, xylitol production in integrated biorefineries can be even more economic, given the readily available raw materials and the co-use of steam, electricity, and water, among others. Exploring new biotechnology techniques in integrated biorefineries would open new markets and opportunities for sustainable xylitol production to fulfill the market's growing demands for this sugar alcohol. This article is a review of the advancements reported in the whole biotechnological process for xylitol production, and involve pretreatment technologies, hemicellulosic hydrolysate preparation, xylose conversion into xylitol, and product recovery. Special attention is devoted to current metabolic engineering strategies to improve this bioprocess, as well as to the importance of xylitol production processes in biorefineries.


Assuntos
Biotecnologia/métodos , Xilitol/biossíntese , Fermentação , Engenharia Metabólica , Polissacarídeos/metabolismo , Xilose/metabolismo
7.
Crit Rev Biotechnol ; 38(4): 483-493, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29233030

RESUMO

Hydrodynamic cavitation (HC) is a process technology with potential for application in different areas including environmental, food processing, and biofuels production. Although HC is an undesirable phenomenon for hydraulic equipment, the net energy released during this process is enough to accelerate certain chemical reactions. The application of cavitation energy to enhance the efficiency of lignocellulosic biomass pretreatment is an interesting strategy proposed for integration in biorefineries for the production of bio-based products. Moreover, the use of an HC-assisted process was demonstrated as an attractive alternative when compared to other conventional pretreatment technologies. This is not only due to high pretreatment efficiency resulting in high enzymatic digestibility of carbohydrate fraction, but also, by its high energy efficiency, simple configuration, and construction of systems, besides the possibility of using on the large scale. This paper gives an overview regarding HC technology and its potential for application on the pretreatment of lignocellulosic biomass. The parameters affecting this process and the perspectives for future developments in this area are also presented and discussed.


Assuntos
Biotecnologia/métodos , Celulose/química , Biocombustíveis , Biomassa , Carboidratos/química , Hidrodinâmica
8.
PLoS One ; 12(11): e0187125, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29125845

RESUMO

Biosurfactants are microbial metabolites with possible applications in various industrial sectors that are considered ecofriendly molecules. In recent years, some studies identified these compounds as alternatives for the elimination of vectors of tropical diseases, such as Aedes aegypti. The major bottlenecks of biosurfactant industrial production have been the use of conventional raw materials that increase production costs as well as opportunistic or pathogenic bacteria, which restrict the application of these biomolecules. The present study shows the potential of hemicellulosic sugarcane bagasse hydrolysate as a raw material for the production of a crystalline glycolipidic BS by Scheffersomyces stipitis NRRL Y-7124, which resulted in an emulsifying index (EI24) of 70 ± 3.4% and a superficial tension of 52 ± 2.9 mN.m-1. Additionally, a possible new application of these compounds as biolarvicides, mainly against A. aegypti, was evaluated. At a concentration of 800 mg.L-1, the produced biosurfactant caused destruction to the larval exoskeletons 12 h after application and presented an letal concentration (LC50) of 660 mg.L-1. Thus, a new alternative for biosurfactant production using vegetal biomass as raw material within the concept of biorefineries was proposed, and the potential of the crystalline glycolipidic biosurfactant in larvicidal formulations against neglected tropical disease vectors was demonstrated.


Assuntos
Aedes/efeitos dos fármacos , Ascomicetos/metabolismo , Larva/efeitos dos fármacos , Mosquitos Vetores , Saccharum/metabolismo , Tensoativos/metabolismo , Aedes/crescimento & desenvolvimento , Animais
9.
Braz J Microbiol ; 47 Suppl 1: 77-85, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27866936

RESUMO

l-asparaginase (EC 3.5.1.1) is an enzyme that catalysis mainly the asparagine hydrolysis in l-aspartic acid and ammonium. This enzyme is presented in different organisms, such as microorganisms, vegetal, and some animals, including certain rodent's serum, but not unveiled in humans. It can be used as important chemotherapeutic agent for the treatment of a variety of lymphoproliferative disorders and lymphomas (particularly acute lymphoblastic leukemia (ALL) and Hodgkin's lymphoma), and has been a pivotal agent in chemotherapy protocols from around 30 years. Also, other important application is in food industry, by using the properties of this enzyme to reduce acrylamide levels in commercial fried foods, maintaining their characteristics (color, flavor, texture, security, etc.) Actually, l-asparaginase catalyzes the hydrolysis of l-asparagine, not allowing the reaction of reducing sugars with this aminoacid for the generation of acrylamide. Currently, production of l-asparaginase is mainly based in biotechnological production by using some bacteria. However, industrial production also needs research work aiming to obtain better production yields, as well as novel process by applying different microorganisms to increase the range of applications of the produced enzyme. Within this context, this mini-review presents l-asparaginase applications, production by different microorganisms and some limitations, current investigations, as well as some challenges to be achieved for profitable industrial production.


Assuntos
Antineoplásicos , Asparaginase/biossíntese , Indústria Farmacêutica , Fermentação , Microbiologia Industrial , Animais , Asparaginase/metabolismo , Indústria Alimentícia , Humanos
10.
Bioresour Technol ; 214: 609-614, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27183237

RESUMO

Hydrodynamic cavitation (HC) was employed in order to improve the efficiency of alkaline pretreatment of sugarcane bagasse (SCB). Response surface methodology (RSM) was used to optimize pretreatment parameters: NaOH concentration (0.1-0.5M), solid/liquid ratio (S/L, 3-10%) and HC time (15-45min), in terms of glucan content, lignin removal and enzymatic digestibility. Under an optimal HC condition (0.48M of NaOH, 4.27% of S/L ratio and 44.48min), 52.1% of glucan content, 60.4% of lignin removal and 97.2% of enzymatic digestibility were achieved. Moreover, enzymatic hydrolysis of the pretreated SCB resulted in a yield 82% and 30% higher than the untreated and alkaline-treated controls, respectively. HC was found to be a potent and promising approach to pretreat lignocellulosic biomass.


Assuntos
Celulose/metabolismo , Temperatura Alta , Saccharum/metabolismo , Hidróxido de Sódio/metabolismo , Biomassa , Biotecnologia/métodos , Celulose/química , Hidrodinâmica , Hidrólise , Microbolhas , Pressão , Saccharum/química , Pressão de Vapor
11.
Braz J Microbiol ; 45(4): 1469-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25763056

RESUMO

The use of hemicellulosic hydrolysates in bioprocesses requires supplementation as to ensure the best fermentative performance of microorganisms. However, in light of conflicting data in the literature, it is necessary to establish an inexpensive and applicable medium for the development of bioprocesses. This paper evaluates the fermentative performance of Scheffersomyces (Pichia) stipitis and Candida guilliermondii growth in sugarcane bagasse hemicellulosic hydrolysate supplemented with different nitrogen sources including rice bran extract, an important by-product of agroindustry and source of vitamins and amino acids. Experiments were carried out with hydrolysate supplemented with rice bran extract and (NH4)2SO4; peptone and yeast extract; (NH4)2SO4, peptone and yeast extract and non-supplemented hydrolysate as a control. S. stipitis produced only ethanol, while C. guilliermondii produced xylitol as the main product and ethanol as by-product. Maximum ethanol production by S. stipitis was observed when sugarcane bagasse hemicellulosic hydrolysate was supplemented with (NH4)2SO4, peptone and yeast extract. Differently, the maximum xylitol formation by C. guilliermondii was obtained by employing hydrolysate supplemented with (NH4)2SO4 and rice bran extract. Together, these findings indicate that: a) for both yeasts (NH4)2SO4 was required as an inorganic nitrogen source to supplement sugarcane bagasse hydrolysate; b) for S. stipitis, sugarcane hemicellulosic hydrolysate must be supplemented with peptone and yeast extract as organic nitrogen source; and: c) for C. guilliermondii, it must be supplemented with rice bran extract. The present study designed a fermentation medium employing hemicellulosic hydrolysate and provides a basis for studies about value-added products as ethanol and xylitol from lignocellulosic materials.


Assuntos
Candida/metabolismo , Celulose/metabolismo , Meios de Cultura/química , Oryza , Pichia/metabolismo , Extratos Vegetais , Saccharum/metabolismo , Candida/crescimento & desenvolvimento , Etanol/metabolismo , Pichia/crescimento & desenvolvimento , Xilitol/metabolismo
12.
Biotechnol Biofuels ; 6: 102, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23856012

RESUMO

BACKGROUND: Fuel ethanol production from sustainable and largely abundant agro-residues such as sugarcane bagasse (SB) provides long term, geopolitical and strategic benefits. Pretreatment of SB is an inevitable process for improved saccharification of cell wall carbohydrates. Recently, ammonium hydroxide-based pretreatment technologies have gained significance as an effective and economical pretreatment strategy. We hypothesized that soaking in concentrated aqueous ammonia-mediated thermochemical pretreatment (SCAA) would overcome the native recalcitrance of SB by enhancing cellulase accessibility of the embedded holocellulosic microfibrils. RESULTS: In this study, we designed an experiment considering response surface methodology (Taguchi method, L8 orthogonal array) to optimize sugar recovery from ammonia pretreated sugarcane bagasse (SB) by using the method of soaking in concentrated aqueous ammonia (SCAA-SB). Three independent variables: ammonia concentration, temperature and time, were selected at two levels with center point. The ammonia pretreated bagasse (SCAA-SB) was enzymatically hydrolysed by commercial enzymes (Celluclast 1.5 L and Novozym 188) using 15 FPU/g dry biomass and 17.5 Units of ß-glucosidase/g dry biomass at 50°C, 150 rpm for 96 h. A maximum of 28.43 g/l reducing sugars corresponding to 0.57 g sugars/g pretreated bagasse was obtained from the SCAA-SB derived using a 20% v/v ammonia solution, at 70°C for 24 h after enzymatic hydrolysis. Among the tested parameters, pretreatment time showed the maximum influence (p value, 0.053282) while ammonia concentration showed the least influence (p value, 0.612552) on sugar recovery. The changes in the ultra-structure and crystallinity of native SCAA-SB and enzymatically hydrolysed SB were observed by scanning electron microscopy (SEM), x-ray diffraction (XRD) and solid-state (13)C nuclear magnetic resonance (NMR) spectroscopy. The enzymatic hydrolysates and solid SCAA-SB were subjected to ethanol fermentation under separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) by Scheffersomyces (Pichia) stipitis NRRL Y-7124 respectively. Higher ethanol production (10.31 g/l and yield, 0.387 g/g) was obtained through SSF than SHF (3.83 g/l and yield, 0.289 g/g). CONCLUSIONS: SCAA treatment showed marked lignin removal from SB thus improving the accessibility of cellulases towards holocellulose substrate as evidenced by efficient sugar release. The ultrastructure of SB after SCAA and enzymatic hydrolysis of holocellulose provided insights of the degradation process at the molecular level.

13.
Appl Biochem Biotechnol ; 169(7): 2101-10, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23397324

RESUMO

The present paper studies the biotechnological production of xylitol using sugarcane bagasse hydrolysate in a repeated batch fermentation system with immobilized cells of Candida guilliermondii FTI20037. Immobilized cell system is considered as an attractive alternative to reuse the well-grown and adapted yeast cells in a new fresh fermentation media, without the need of the inoculum stage. In this work, seven repeated batches were performed in a fluidized bed bioreactor using immobilized cells in calcium alginate beads. According to the obtained results it was observed that the immobilized cells of C. guilliermondii can be reused for six successive batches maintaining an average xylitol yield (Y(p/s)) of 0.7 g/L and a volumetric productivity (Q(p)) of 0.42 g/Lh at the end of 432 h of fermentation. On the other hand, in the seventh batch (504 h), a decrease of 44 % in the final concentration of xylitol was observed. This reduction can be explained by the possible diffusion and accumulation of insoluble substances, found in the hemicellulosic hydrolysate, in the interior of the immobilization support resulting in substrate mass transfer limitations.


Assuntos
Biotecnologia/métodos , Fermentação/fisiologia , Edulcorantes/metabolismo , Xilitol/metabolismo , Reatores Biológicos , Candida/metabolismo , Células Imobilizadas/metabolismo , Lignina/metabolismo , Saccharum/metabolismo
14.
J Food Sci Technol ; 50(5): 958-64, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24426003

RESUMO

Ribonucleotides have shown many promising applications in food and pharmaceutical industries. The aim of the present study was to produce ribonucleotides (RNA) by Kluyveromyces marxianus ATCC 8,554 utilizing cheese whey, a dairy industry waste, as a main substrate under batch fermentation conditions. The effects of temperature, pH, aeration rate, agitation and initial cellular concentration were studied simultaneously through factorial design for RNA, biomass production and lactose consumption. The maximum RNA production (28.66 mg/g of dry biomass) was observed at temperature 30°C, pH 5.0 and 1 g/l of initial cellular concentration after 2 h of fermentation. Agitation and aeration rate did not influence on RNA concentration (p > 0.05). Maximum lactose consumption (98.7%) and biomass production (6.0 g/l) was observed after 12 h of incubation. This study proves that cheese whey can be used as an adequate medium for RNA production by K. marxianus under the optimized conditions at industrial scale.

15.
J Biomed Biotechnol ; 2012: 989572, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251086

RESUMO

Depleted supplies of fossil fuel, regular price hikes of gasoline, and environmental damage have necessitated the search for economic and eco-benign alternative of gasoline. Ethanol is produced from food/feed-based substrates (grains, sugars, and molasses), and its application as an energy source does not seem fit for long term due to the increasing fuel, food, feed, and other needs. These concerns have enforced to explore the alternative means of cost competitive and sustainable supply of biofuel. Sugarcane residues, sugarcane bagasse (SB), and straw (SS) could be the ideal feedstock for the second-generation (2G) ethanol production. These raw materials are rich in carbohydrates and renewable and do not compete with food/feed demands. However, the efficient bioconversion of SB/SS (efficient pretreatment technology, depolymerization of cellulose, and fermentation of released sugars) remains challenging to commercialize the cellulosic ethanol. Among the technological challenges, robust pretreatment and development of efficient bioconversion process (implicating suitable ethanol producing strains converting pentose and hexose sugars) have a key role to play. This paper aims to review the compositional profile of SB and SS, pretreatment methods of cane biomass, detoxification methods for the purification of hydrolysates, enzymatic hydrolysis, and the fermentation of released sugars for ethanol production.


Assuntos
Biomassa , Biotecnologia/métodos , Metabolismo dos Carboidratos , Enzimas/metabolismo , Etanol/metabolismo , Fermentação , Saccharum/metabolismo , Saccharum/química
16.
Appl Biochem Biotechnol ; 167(7): 2054-67, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22653682

RESUMO

Ten yeast strains were evaluated concerning their capabilities to assimilate biodiesel-derived glycerol in batch cultivation. The influence of glycerol concentration, temperature, pH and yeast extract concentration on biomass production was studied for the yeast selected. Further, the effect of agitation on glycerol utilization by the yeast Hansenula anomala was also studied. The yeast H. anomala CCT 2648 showed the highest biomass yield (0.30 g g(-1)) and productivity (0.19 g L(-1) h(-1)). Citric acid, succinic acid, acetic acid and ethanol were found as the main metabolites produced. The increase of yeast extract concentration from 1 to 3 g L(-1) resulted in high biomass production. The highest biomass concentration (21 g L(-1)), yield (0.45 g g(-1)) and productivity (0.31 g L(-1) h(-1)), as well as ribonucleotide production (13.13 mg g(-1)), were observed at 700 rpm and 0.5 vvm. These results demonstrated that glycerol from biodiesel production process showed to be a feasible substrate for producing biomass and ribonucleotides by yeast species.


Assuntos
Biocombustíveis/análise , Biomassa , Biotecnologia/métodos , Glicerol/metabolismo , Ribonucleotídeos/biossíntese , Leveduras/metabolismo , Aerobiose , Anaerobiose , Técnicas de Cultura Celular por Lotes , Reatores Biológicos/microbiologia , Ácidos Carboxílicos/metabolismo , Etanol/metabolismo , Redes e Vias Metabólicas , RNA/biossíntese
17.
J Ind Microbiol Biotechnol ; 38(1): 199-207, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20844925

RESUMO

This work had as its main objective to contribute to the development of a biological detoxification of hemicellulose hydrolysates obtained from different biomass plants using Issatchenkia occidentalis CCTCC M 206097 yeast. Tests with hemicellulosic hydrolysate of sugarcane bagasse in different concentrations were carried out to evaluate the influence of the hydrolysate concentration on the inhibitory compounds removal from the sugarcane bagasse hydrolysate, without reduction of sugar concentration. The highest reduction values of inhibitors concentration and less sugar losses were observed when the fivefold concentrated hydrolysate was treated by the evaluated yeast. In these experiments it was found that the high sugar concentrations favored lower sugar consumption by the yeast. The highest concentration reduction of syringaldehyde (66.67%), ferulic acid (73.33%), furfural (62%), and 5-HMF (85%) was observed when the concentrated hydrolysate was detoxified by using this yeast strain after 24 h of experimentation. The results obtained in this work showed the potential of the yeast Issatchenkia occidentalis CCTCC M 206097 as detoxification agent of hemicellulosic hydrolysate of different biomass plants.


Assuntos
Carboidratos/química , Celulose/metabolismo , Polissacarídeos/metabolismo , Saccharomycetales/metabolismo , Biomassa , Biotransformação , Coffea/química , Furanos/metabolismo , Hidrólise , Saccharomyces cerevisiae , Saccharum/química , Zea mays/química
18.
Appl Biochem Biotechnol ; 153(1-3): 163-70, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19214792

RESUMO

Dilute-acid hydrolysis pretreatment of sugarcane bagasse resulted in release of 48% (18.4 g/L) of the xylan in the hemicellulose fraction into the hydrolysate as monomeric xylose. In order to enhance the recuperation of this monomer, a post-hydrolysis stage consisted of thermal treatment was carried out. This treatment resulted in an increase in xylose release of 62% (23.5 g/L) of the hemicellulose fraction. Original and post-hydrolysates were concentrated to the same levels of monomeric xylose in the fermentor feed. During the fermentation process, cellular growth was observed to be higher in the post-hydrolysate (3.5 g/L, Y(x/s) = 0.075 g cells/g xylose) than in the original hydrolysate (2.9 g/L, Y(x/s) = 0.068 g cells/g xylose). The post-treated hydrolysate required less concentration of sugars resulting in a lower concentration of fermentation inhibitors, which were formed primarily in the dilute acid hydrolysis step. Post-hydrolysis step led to a high xylose-xylitol conversion efficiency of 76% (0.7 g xylitol/g xylose) and volumetric productivity of 0.68 g xylitol/L h when compared to 71% (0.65 g xylitol/g xylose and productivity of 0.61 g xylitol/L h) for the original hemicellulosic hydrolysate.


Assuntos
Monossacarídeos/biossíntese , Saccharum/metabolismo , Xilitol/biossíntese , Biotecnologia/métodos , Hidrólise
19.
Exp Parasitol ; 119(1): 74-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18316079

RESUMO

Xylitol is a sugar alcohol being explored for clinical uses. The aim was to evaluate the effects of xylitol on Leishmania amazonensis-infected J774A.1 macrophages. Macrophages were infected with L. amazonensis for 3h, washed and incubated with 2.5 or 5.0% xylitol for 24, 48, and 72 h at 37 degrees C. Infection indexes for macrophages incubated only in medium were compared to those treated with xylitol. Cell viability and nitric oxide production were determined each time. Xylitol did not affect L. amazonensis or J774A.1 cell viabilities. Xylitol at 5.0% stimulated nitric oxide production by macrophages at 72 h (p<0.01). At 2.5 and 5.0%, xylitol inhibited nitric oxide production by L. amazonensis at 48 h (p<0.05) when compared to control. Infection indexes were significantly lower at 72 h (p<0.05), (16.9% and 9.6%) in cells cultivated with 2.5 and 5.0% xylitol, respectively, compared to control (38.4%). Results suggest a potential leishmanicidal action of the xylitol on infected macrophages.


Assuntos
Leishmania mexicana/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Óxido Nítrico/biossíntese , Edulcorantes/farmacologia , Xilitol/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Leishmania mexicana/crescimento & desenvolvimento , Leishmania mexicana/metabolismo , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos
20.
Appl Biochem Biotechnol ; 121-124: 427-37, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15917619

RESUMO

The effect of glucose on xylose-xylitol metabolism in fermentation medium consisting of sugarcane bagasse hydrolysate was evaluated by employing an inoculum of Candida guilliermondii grown in synthetic media containing, as carbon sources, glucose (30 g/L), xylose (30 g/L), or a mixture of glucose (2 g/L) and xylose (30 g/L). The inoculum medium containing glucose promoted a 2.5-fold increase in xylose reductase activity (0.582 IU/mgprot) and a 2-fold increase in xylitol dehydrogenase activity (0.203 IU/mgprot) when compared with an inoculum-grown medium containing only xylose. The improvement in enzyme activities resulted in higher values of xylitol yield (0.56 g/g) and productivity (0.46 g/[L.h]) after 48 h of fermentation.


Assuntos
Aldeído Redutase/biossíntese , Candida/crescimento & desenvolvimento , Candida/metabolismo , Meios de Cultura/metabolismo , Glucose/metabolismo , Desidrogenase do Álcool de Açúcar/biossíntese , Xilitol/metabolismo , Xilose/metabolismo , Aldeído Redutase/análise , Aldeído Redutase/química , Técnicas de Cultura de Células/métodos , Proliferação de Células , Meios de Cultura/análise , Meios de Cultura/química , D-Xilulose Redutase , Ativação Enzimática , Taxa de Depuração Metabólica , Desidrogenase do Álcool de Açúcar/análise , Desidrogenase do Álcool de Açúcar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA