RESUMO
Chikungunya virus (CHIKV) infection is caused by an arbovirus prevalent in various parts of the world. The virus can induce autoantibodies and rheumatic diseases, such as rheumatoid arthritis and spondylarthritis. However, until now, no case of Sjögren syndrome (SS) was described associated with CHIKV. In this article, we describe a 49-year-old female with polyarthralgia and a temporary rash on her trunk and arms. Her physical examination showed polyarthritis of her ankles and wrists. Serologies for CHIKV were interpreted as positive with IgM 6.5 (normal range < 0.8) and negative for IgG. Antinuclear antibodies were positive at a titer of 1:640 as well as anti-Ro/SS-A. The diagnosis of subacute CHIKV infection was determined. The Schirmer test, Rose Bengal, and salivary scintigraphy were positive and the diagnosis of SS was confirmed. She was treated with hydroxychloroquine, methotrexate, and a single dose of betamethasone depot. This is the first report on CHIKV associated with SS. Sequence analysis of the CHIKV proteome versus SS autoantigens showed an extensive peptide sharing between the virus and numerous SS autoantigens, thus supporting the hypothesis that autoimmune cross-reactivity might causally link CHIKV to SS.
RESUMO
A major cause of morbidity and mortality in the context of the antiphospholipid syndrome (APS) is the occurrence of thrombotic events. Besides the pathogenic roles of antiphospholipid antibodies (aPL), other risk factors and medical conditions, which are conditions for traditional risk of an individual without the APS, can coexist in this patient, raising their risk of developing thrombosis. Therefore, the clinical and laboratory investigation of comorbidities known to increase cardiovascular risk in patients with antiphospholipid antibody syndrome is crucial for the adoption of a more complete and effective treatment. Experimental models and clinical studies show evidence of association between APS and premature formation of atherosclerotic plaques. Atherosclerosis has major traditional risk factors: hypertension, diabetes mellitus, obesity, dyslipidemia, smoking, and sedentary lifestyle that may be implicated in vascular involvement in patients with APS. The influence of nontraditional risk factors as hyperhomocysteinemia, increased lipoprotein a, and anti-oxLDL in the development of thromboembolic events in APS patients has been studied in scientific literature. Metabolic syndrome with all its components also has been recently studied in antiphospholipid syndrome and is associated with arterial events.