Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Appl Oral Sci ; 31: e20230158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37646717

RESUMO

OBJECTIVE: This study aimed to develop a pro-angiogenic hydrogel with in situ gelation ability for alveolar bone defects repair. METHODOLOGY: Silk fibroin was chemically modified by Glycidyl Methacrylate (GMA), which was evaluated by proton nuclear magnetic resonance (1H-NMR). Then, the photo-crosslinking ability of the modified silk fibroin was assessed. Scratch and transwell-based migration assays were conducted to investigate the effect of the photo-crosslinked silk fibroin hydrogel on the migration of human umbilical vein endothelial cells (HUVECs). In vitro angiogenesis was conducted to examine whether the photo-crosslinked silk fibroin hydrogel would affect the tube formation ability of HUVECs. Finally, subcutaneous implantation experiments were conducted to further examine the pro-angiogenic ability of the photo-crosslinked silk fibroin hydrogel, in which the CD31 and α-smooth muscle actin (α-SMA) were stained to assess neovascularization. The tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were also stained to evaluate inflammatory responses after implantation. RESULTS: GMA successfully modified the silk fibroin, which we verified by our 1H-NMR and in vitro photo-crosslinking experiment. Scratch and transwell-based migration assays proved that the photo-crosslinked silk fibroin hydrogel promoted HUVEC migration. The hydrogel also enhanced the tube formation of HUVECs in similar rates to Matrigel®. After subcutaneous implantation in rats for one week, the hydrogel enhanced neovascularization without triggering inflammatory responses. CONCLUSION: This study found that photo-crosslinked silk fibroin hydrogel showed pro-angiogenic and inflammation inhibitory abilities. Its photo-crosslinking ability makes it suitable for matching irregular alveolar bone defects. Thus, the photo-crosslinkable silk fibroin-derived hydrogel is a potential candidate for constructing scaffolds for alveolar bone regeneration.


Assuntos
Fibroínas , Hidrogéis , Humanos , Animais , Ratos , Regeneração Óssea , Células Endoteliais da Veia Umbilical Humana
2.
J. appl. oral sci ; J. appl. oral sci;31: e20230158, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1506563

RESUMO

Abstract Objective: This study aimed to develop a pro-angiogenic hydrogel with in situ gelation ability for alveolar bone defects repair. Methodology: Silk fibroin was chemically modified by Glycidyl Methacrylate (GMA), which was evaluated by proton nuclear magnetic resonance (1H-NMR). Then, the photo-crosslinking ability of the modified silk fibroin was assessed. Scratch and transwell-based migration assays were conducted to investigate the effect of the photo-crosslinked silk fibroin hydrogel on the migration of human umbilical vein endothelial cells (HUVECs). In vitro angiogenesis was conducted to examine whether the photo-crosslinked silk fibroin hydrogel would affect the tube formation ability of HUVECs. Finally, subcutaneous implantation experiments were conducted to further examine the pro-angiogenic ability of the photo-crosslinked silk fibroin hydrogel, in which the CD31 and α-smooth muscle actin (α-SMA) were stained to assess neovascularization. The tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were also stained to evaluate inflammatory responses after implantation. Results: GMA successfully modified the silk fibroin, which we verified by our 1H-NMR and in vitro photo-crosslinking experiment. Scratch and transwell-based migration assays proved that the photo-crosslinked silk fibroin hydrogel promoted HUVEC migration. The hydrogel also enhanced the tube formation of HUVECs in similar rates to Matrigel®. After subcutaneous implantation in rats for one week, the hydrogel enhanced neovascularization without triggering inflammatory responses. Conclusion: This study found that photo-crosslinked silk fibroin hydrogel showed pro-angiogenic and inflammation inhibitory abilities. Its photo-crosslinking ability makes it suitable for matching irregular alveolar bone defects. Thus, the photo-crosslinkable silk fibroin-derived hydrogel is a potential candidate for constructing scaffolds for alveolar bone regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA