Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 362: 124974, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39332800

RESUMO

GenX, a substitute for perfluorooctanoic acid, has demonstrated potential enterotoxicity. The enterotoxic effects of GenX and effective interventions need further investigation. In the present study, the mice were administered GenX (2 mg/kg/day) with or without inulin supplementation (5 g/kg/day) for 12 weeks. Histopathological assessments revealed that GenX induced colonic gland atrophy, inflammatory cell infiltration, a reduction in goblet cell numbers, and decreased mucus secretion. Furthermore, a significant decrease in the protein levels of ZO-1, occludin, and claudin-5 indicated compromised barrier integrity. Transcriptomic analysis identified 2645 DEGs, which were mapped to 39 significant pathways. The TGF-ß, BMP6, and ß-catenin proteins were upregulated in the intestinal mucosa following GenX exposure, indicating activation of the TGF-ß pathway. Conversely, the protein expression of PAK3, CyclinD2, contactin1, and Jam2 decreased, indicating disruptions in cell cycle progression and cell adhesion. Inulin cotreatment ameliorated these GenX-induced alterations, partially through modulating the MAPK pathway, as evidenced by the upregulation of the cell cycle and cell adhesion proteins. Collectively, these findings suggested that GenX exposure triggered intestinal injury in mice by activating the TGF-ß pathway and disrupting proteins crucial for the cell cycle and cell adhesion, whereas inulin supplementation mitigated this injury by modulating the MAPK pathway.

2.
Environ Pollut ; 342: 123090, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072026

RESUMO

Perfluorooctanoic acid (PFOA) is a widely used industrial compound that has been found to induce intestinal toxicity. However, the underlying mechanisms have not been fully clarified and effective interventions are rarely developed. Inulin, a prebiotic, has been used as a supplement in human daily life as well as in gastrointestinal diseases and metabolic disorders. In this study, male mice were exposed to PFOA with or without inulin supplementation to investigate the enterotoxicity and potential intervention effects of inulin. Mice were administered PFOA at 1 mg/kg/day, PFOA with inulin at 5 g/kg/day, or Milli-Q water for 12 weeks. Histopathological analysis showed that PFOA caused colon shortening, goblet cell reduction, and inflammatory cell infiltration. The expression of the tight junction proteins ZO-1, occludin and claudin5 significantly decreased, indicating impaired barrier function. According to the RNA-sequencing analysis, PFOA exposure resulted in 917 differentially expressed genes, involving 39 significant pathways, such as TNF signaling and cell cycle pathways. In addition, the protein expression of TNF-α, IRG-47, cyclinB1, and cyclinB2 increased, while Gadd45γ, Lzip, and Jam2 decreased, suggesting the involvement of the TNF signaling pathway, cell cycle, and cell adhesion molecules in PFOA-associated intestinal injury. Inulin intervention alleviated PFOA-induced enterotoxicity by activating the PI3K/AKT/mTOR signaling pathway and increasing the protein expression of Wnt1, ß-catenin, PI3K, Akt3, and p62, while suppressing MAP LC3ß, TNF-α, and CyclinE expression. These findings suggested that PFOA-induced intestinal injury, including inflammation and tight junction disruption, was mitigated by inulin through modifying the PI3K/AKT/mTOR signaling pathways. Our study provides valuable insights into the enterotoxic effects of PFOA and highlights the potential therapeutic role of inulin.


Assuntos
Caprilatos , Fluorocarbonos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Humanos , Masculino , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inulina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA