Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 430
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 277, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39358777

RESUMO

BACKGROUND: Early dissemination to distant organs accounts for the dismal prognosis of patients with pancreatic ductal adenocarcinoma (PDAC). Chronic, dysregulated, persistent and unresolved inflammation provides a preferred tumor microenvironment (TME) for tumorigenesis, development, and metastasis. A better understanding of the key regulators that maintain inflammatory TME and the development of predictive biomarkers to identify patients who are most likely to benefit from specific inflammatory-targeted therapies is crucial for advancing personalized cancer treatment. METHODS: This study identified cell-specific expression of CALB2 in human PDAC through single-cell RNA sequencing analysis and assessed its clinicopathological correlations in tissue microarray using multi-color immunofluorescence. Co-culture systems containing cancer-associated fibroblasts (CAFs) and patient-derived organoids (PDOs) in vitro and in vivo were employed to elucidate the effects of CALB2-activated CAFs on PDAC malignancy. Furthermore, CUT&RUN assays, luciferase reporter assays, RNA sequencing, and gain- or loss-of-function assays were used to unravel the molecular mechanisms of CALB2-mediated inflammatory reprogramming and metastasis. Additionally, immunocompetent KPC organoid allograft models were constructed to evaluate CALB2-induced immunosuppression and PDAC metastasis, as well as the efficacy of inflammation-targeted therapy. RESULTS: CALB2 was highly expressed both in CAFs and cancer cells and correlated with an unfavorable prognosis and immunosuppressive TME in PDAC patients. CALB2 collaborated with hypoxia to activate an inflammatory fibroblast phenotype, which promoted PDAC cell migration and PDO growth in vitro and in vivo. In turn, CALB2-activated CAFs upregulated CALB2 expression in cancer cells through IL6-STAT3 signaling-mediated direct transcription. In cancer cells, CALB2 further activated Ca2+-CXCL14 inflammatory axis to facilitate PDAC metastatic outgrowth and immunosuppression. Genetic or pharmaceutical inhibition of CXCL14 significantly suppressed CALB2-mediated metastatic colonization of PDAC cells in vivo and extended mouse survival. CONCLUSIONS: These findings identify CALB2 as a key regulator of inflammatory reprogramming to promote PDAC metastatic progression. Combination therapy with αCXCL14 monoclonal antibody and gemcitabine emerges as a promising strategy to suppress distant metastasis and improve survival outcomes in PDAC with CALB2 overexpression.


Assuntos
Metástase Neoplásica , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Camundongos , Animais , Inflamação/patologia , Inflamação/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Feminino , Masculino , Prognóstico
2.
Genes Dis ; 11(6): 101143, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39253579

RESUMO

Pancreatic cancer, a highly fatal malignancy, is predicted to rank as the second leading cause of cancer-related death in the next decade. This highlights the urgent need for new insights into personalized diagnosis and treatment. Although molecular subtypes of pancreatic cancer were well established in genomics and transcriptomics, few known molecular classifications are translated to guide clinical strategies and require a paradigm shift. Notably, chronically developing and continuously improving high-throughput technologies and systems serve as an important driving force to further portray the molecular landscape of pancreatic cancer in terms of epigenomics, proteomics, metabonomics, and metagenomics. Therefore, a more comprehensive understanding of molecular classifications at multiple levels using an integrated multi-omics approach holds great promise to exploit more potential therapeutic options. In this review, we recapitulated the molecular spectrum from different omics levels, discussed various subtypes on multi-omics means to move one step forward towards bench-to-beside translation of pancreatic cancer with clinical impact, and proposed some methodological and scientific challenges in store.

3.
J Extracell Vesicles ; 13(8): e12488, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39104296

RESUMO

Pancreatic cancer remains one of the most lethal malignant diseases. Gemcitabine-based chemotherapy is still one of the first-line systemic treatments, but chemoresistance occurs in the majority of patients. Recently, accumulated evidence has demonstrated the role of the tumour microenvironment in promoting chemoresistance. In the tumour microenvironment, pancreatic stellate cells (PSCs) are among the main cellular components, and extracellular vesicles (EVs) are common mediators of cell‒cell communication. In this study, we showed that SP1-transcribed miR-31-5p not only targeted LATS2 in pancreatic cancer cells but also regulated the Hippo pathway in PSCs through EV transfer. Consequently, PSCs synthesized and secreted protein acidic and rich in cysteins (SPARC), which was preferentially expressed in stromal cells, stimulating Extracellular Signal regulated kinase (ERK) signalling in pancreatic cancer cells. Therefore, pancreatic cancer cell survival and chemoresistance were improved due to both the intrinsic Hippo pathway regulated by miR-31-5p and external SPARC-induced ERK signalling. In mouse models, miR-31-5p overexpression in pancreatic cancer cells promoted the chemoresistance of coinjected xenografts. In a tissue microarray, pancreatic cancer patients with higher miR-31-5p expression had shorter overall survival. Therefore, miR-31-5p regulates the Hippo pathway in multiple cell types within the tumour microenvironment via EVs, ultimately contributing to the chemoresistance of pancreatic cancer cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Vesículas Extracelulares , Via de Sinalização Hippo , MicroRNAs , Osteonectina , Neoplasias Pancreáticas , Células Estreladas do Pâncreas , Proteínas Serina-Treonina Quinases , Microambiente Tumoral , MicroRNAs/metabolismo , MicroRNAs/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Humanos , Células Estreladas do Pâncreas/metabolismo , Animais , Proteínas Serina-Treonina Quinases/metabolismo , Camundongos , Osteonectina/metabolismo , Osteonectina/genética , Vesículas Extracelulares/metabolismo , Linhagem Celular Tumoral , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética , Regulação Neoplásica da Expressão Gênica , Gencitabina , Transdução de Sinais , Camundongos Nus
4.
Cancer Lett ; 601: 217162, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39127339

RESUMO

Obesity is a significant risk factor for various cancers, including pancreatic cancer (PC), but the underlying mechanisms are still unclear. In our study, pancreatic ductal epithelial cells were cultured using serum from human subjects with diverse metabolic statuses, revealing that serum from patients with obesity alters inflammatory cytokine signaling and ferroptosis, where a mutual enhancement between interleukin 34 (IL-34) expression and ferroptosis defense was observed in these cells. Notably, oncogenic KRASG12D amplified their interaction and this leads to the initiation of pancreatic ductal adenocarcinoma (PDAC) in diet-induced obese mice via macrophage-mediated immunosuppression. Single-cell RNA sequencing (scRNA-seq) of human samples showed that cytokine signaling, ferroptosis defense, and immunosuppression are correlated with the patients' body mass index (BMI) during PDAC progression. Our findings provide a mechanistic link between obesity, inflammation, ferroptosis defense, and pancreatic cancer, suggesting novel therapeutic targets for the prevention and treatment of obesity-associated PDAC.


Assuntos
Carcinoma Ductal Pancreático , Citocinas , Ferroptose , Obesidade , Neoplasias Pancreáticas , Transdução de Sinais , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/genética , Obesidade/metabolismo , Obesidade/complicações , Animais , Humanos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Camundongos , Citocinas/metabolismo , Masculino , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Feminino , Camundongos Obesos
5.
Cancer Lett ; 598: 217117, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39019144

RESUMO

Cancer cells rewire metabolism to sculpt the immune tumor microenvironment (TME) and propel tumor advancement, which intricately tied to post-translational modifications. Histone lactylation has emerged as a novel player in modulating protein functions, whereas little is known about its pathological role in pancreatic ductal adenocarcinoma (PDAC) progression. Employing a multi-omics approach encompassing bulk and single-cell RNA sequencing, metabolomics, ATAC-seq, and CUT&Tag methodologies, we unveiled the potential of histone lactylation in prognostic prediction, patient stratification and TME characterization. Notably, "LDHA-H4K12la-immuno-genes" axis has introduced a novel node into the regulatory framework of "metabolism-epigenetics-immunity," shedding new light on the landscape of PDAC progression. Furthermore, the heightened interplay between cancer cells and immune counterparts via Nectin-2 in liver metastasis with elevated HLS unraveled a positive feedback loop in driving immune evasion. Simultaneously, immune cells exhibited altered HLS and autonomous functionality across the metastatic cascade. Consequently, the exploration of innovative combination strategies targeting the metabolism-epigenetics-immunity axis holds promise in curbing distant metastasis and improving survival prospects for individuals grappling with challenges of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Epigênese Genética , Histonas , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral/imunologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Histonas/metabolismo , Histonas/genética , Processamento de Proteína Pós-Traducional , Regulação Neoplásica da Expressão Gênica , Prognóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo
6.
Dig Surg ; 41(3): 111-121, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38981458

RESUMO

INTRODUCTION: Intraductal papillary mucinous neoplasm (IPMN) is an important precursor lesion of pancreatic cancer. Systemic inflammatory parameters are widely used in the prognosis prediction of cancer; however, their prognostic implications in IPMN with associated invasive carcinoma (IPMN-INV) are unclear. This study aims to explore the prognostic value of systemic inflammatory parameters in patients with IPMN-INV. METHODS: From 2015 to 2021, patients with pathologically confirmed IPMN who underwent surgical resection at Peking Union Medical College Hospital were enrolled. The clinical, radiological, and pathological data of the enrolled patients were collected and analyzed. Preoperative systemic inflammatory parameters were calculated as previously reported. RESULTS: Eighty-six patients with IPMN-INV met the inclusion criteria. The lymphocyte-to-monocyte ratio (LMR) was the only systemic inflammatory parameter independently associated with the cancer-specific survival (CSS). An LMR higher than 3.5 was significantly associated with a favorable CSS in univariate (hazard ratio [HR] 0.305, p = 0.003) and multivariate analyses (HR 0.221, p = 0.001). Other independently prognostic factors included the presence of clinical symptoms, cyst size, N stage, and tumor differentiation. Additionally, a model including LMR was established for the prognosis prediction of IPMN-INV and had a C-index of 0.809. CONCLUSIONS: Preoperative LMR could serve as a feasible prognostic biomarker for IPMN-INV. A decreased LMR (cutoff value of 3.5) was an independent predictor of poor survival for IPMN-INV.


Assuntos
Linfócitos , Monócitos , Neoplasias Pancreáticas , Humanos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/cirurgia , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/patologia , Prognóstico , Estudos Retrospectivos , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/cirurgia , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/patologia , Neoplasias Intraductais Pancreáticas/mortalidade , Neoplasias Intraductais Pancreáticas/cirurgia , Neoplasias Intraductais Pancreáticas/patologia , Neoplasias Intraductais Pancreáticas/sangue , Invasividade Neoplásica , Taxa de Sobrevida , Hospitais com Alto Volume de Atendimentos , Adenocarcinoma Mucinoso/mortalidade , Adenocarcinoma Mucinoso/cirurgia , Adenocarcinoma Mucinoso/sangue , Adenocarcinoma Mucinoso/patologia , Contagem de Linfócitos , Contagem de Leucócitos
7.
Gastroenterology ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39048054

RESUMO

BACKGROUND & AIMS: The pancreas is composed of endocrine and exocrine parts, and its interlacing structure indicates potential interaction between endocrine and exocrine cells. Although the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) has been well characterized, the role of pancreatic endocrine cells during carcinogenesis is relatively understudied. METHODS: The changes of endocrine cells in PDAC by single-cell transcriptome sequencing, spatial transcriptome sequencing, and multiplex immunohistochemistry were depicted. After that, the interaction between pancreatic carcinogenesis and endocrine changes was explored in orthotopic transplantation mice, KrasLSL-G12DPdx1-Cre mice, and KrasLSL-G12Dp53LoxPPdx1-CreER mice. Finally, we proved the mechanism of the interaction between endocrine and exocrine parts of the pancreas through islet isolation, co-culture in vitro and co-injection in vivo. RESULTS: Pancreatic endocrine cells displayed significantly different transcriptomic characteristics and increased interaction with exocrine part in PDAC. Specifically, among all of the changes, pancreatic polypeptide-positive cells showed a sharp increment accompanied by the progression of the cancer lesion, which might be derived from the transdifferentiation of α and ß cells. Interestingly, it was proved that PDAC cells were able to induce the transdifferentiation of pancreatic α cells and ß cells into glucagon-pancreatic polypeptide and insulin-pancreatic polypeptide double-positive cells, which further promoted carcinogenesis and development of PDAC in a paracrine-dependent manner and formed a reciprocal interaction. CONCLUSIONS: This study systematically maps the alteration of pancreatic endocrine cells in PDAC and elucidates the potential endocrine-exocrine interaction mechanisms during PDAC carcinogenesis. In addition, cancer-associated endocrine cells are defined and characterized, thereby further broadening the composition of PDAC microenvironment.

8.
Heliyon ; 10(12): e32357, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39022002

RESUMO

Glucocorticoids (GCs), a class of hormones secreted by the adrenal glands, are released into the bloodstream to maintain homeostasis and modulate responses to various stressors. These hormones function by binding to the widely expressed GC receptor (GR), thereby regulating a wide range of pathophysiological processes, especially in metabolism and immunity. The role of GCs in the tumor immune microenvironment (TIME) of lung cancer (LC) has been a focal point of research. As immunosuppressive agents, GCs exert a crucial impact on the occurrence, progression, and treatment of LC. In the TIME of LC, GCs act as a constantly swinging pendulum, simultaneously offering tumor-suppressive properties while diminishing the efficacy of immune-based therapies. The present study reviews the role and mechanisms of GCs in the TIME of LC.

9.
Mol Cancer ; 23(1): 140, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982491

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy with a poor prognosis and limited therapeutic options. Research on the tumor microenvironment (TME) of PDAC has propelled the development of immunotherapeutic and targeted therapeutic strategies with a promising future. The emergence of single-cell sequencing and mass spectrometry technologies, coupled with spatial omics, has collectively revealed the heterogeneity of the TME from a multiomics perspective, outlined the development trajectories of cell lineages, and revealed important functions of previously underrated myeloid cells and tumor stroma cells. Concurrently, these findings necessitated more refined annotations of biological functions at the cell cluster or single-cell level. Precise identification of all cell clusters is urgently needed to determine whether they have been investigated adequately and to identify target cell clusters with antitumor potential, design compatible treatment strategies, and determine treatment resistance. Here, we summarize recent research on the PDAC TME at the single-cell multiomics level, with an unbiased focus on the functions and potential classification bases of every cellular component within the TME, and look forward to the prospects of integrating single-cell multiomics data and retrospectively reusing bulk sequencing data, hoping to provide new insights into the PDAC TME.


Assuntos
Neoplasias Pancreáticas , Análise de Célula Única , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Análise de Célula Única/métodos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Animais , Biomarcadores Tumorais , Genômica/métodos , Regulação Neoplásica da Expressão Gênica , Multiômica
11.
Cell Commun Signal ; 22(1): 380, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39069612

RESUMO

Amino acid metabolism plays a pivotal role in tumor microenvironment, influencing various aspects of cancer progression. The metabolic reprogramming of amino acids in tumor cells is intricately linked to protein synthesis, nucleotide synthesis, modulation of signaling pathways, regulation of tumor cell metabolism, maintenance of oxidative stress homeostasis, and epigenetic modifications. Furthermore, the dysregulation of amino acid metabolism also impacts tumor microenvironment and tumor immunity. Amino acids can act as signaling molecules that modulate immune cell function and immune tolerance within the tumor microenvironment, reshaping the anti-tumor immune response and promoting immune evasion by cancer cells. Moreover, amino acid metabolism can influence the behavior of stromal cells, such as cancer-associated fibroblasts, regulate ECM remodeling and promote angiogenesis, thereby facilitating tumor growth and metastasis. Understanding the intricate interplay between amino acid metabolism and the tumor microenvironment is of crucial significance. Expanding our knowledge of the multifaceted roles of amino acid metabolism in tumor microenvironment holds significant promise for the development of more effective cancer therapies aimed at disrupting the metabolic dependencies of cancer cells and modulating the tumor microenvironment to enhance anti-tumor immune responses and inhibit tumor progression.


Assuntos
Aminoácidos , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Aminoácidos/metabolismo , Animais , Reprogramação Celular , Reprogramação Metabólica
12.
Cancer Lett ; : 217131, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39048044

RESUMO

Pancreatic neuroendocrine tumors (PanNETs), the second most common type of primary pancreatic tumors, display notable heterogeneity in invasiveness. Current knowledge regarding genomic alterations, including DAXX/ATRX, MEN1 mutations, and copy number variations (CNVs), provides some insights into tumor invasiveness. However, the underlying reasons for the significant variation in invasiveness between insulinoma and other types of PanNETs remain unclear. To construct a comprehensive model for the stratification of prognosis, we employed analysis of both the well-established Rip1-Tag2 (RT2) mouse model of PanNETs and human PanNETs with various functional types. Firstly, by applying single-cell and bulk RNA sequencing in PanNETs from different ages and strains of RT2 mice and human PanNETs, we introduced a 2-dimensional (2D) classification system. Based on the 2-D classification system, human PanNETs were mainly classified as benign insulinomas or non-insulinomas subclusters. Non-insulinomas subtypes mainly included gastrinomas, glucagonomas, VIPomas, and NF-PanNETs, which all exhibited potential invasiveness. In addition, we discovered an enrichment of specific CNV patterns and mutations in corresponding human PanNET subclusters. Then we denoted somatic DAXX/ATRX as the 'second hit' and confounding factors for invasiveness. Finally, by combining the 2D system, DAXX/ATRX mutation status, and tumor diameter, a group of indolent PanNETs with minimal recurrence risk was identified. In conclusion, our current work constructed a comprehensive model to elucidate the heterogeneity of invasiveness in PanNETs and improve prognostic stratification.

13.
J Pancreatol ; 7(2): 119-130, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38883575

RESUMO

Objective: Pancreatic cancer is one of the most aggressive malignancies, a robust prognostic signature and novel biomarkers are urgently needed for accurate stratification of the patients and optimization of clinical decision-making. Methods: A list of bioinformatic analysis were applied in public dataset to construct an immune-related signature. Furthermore, the most pivotal gene in the signature was identified. The potential mechanism of the core gene function was revealed through GSEA, CIBERSORT, ESTIMATE, immunophenoscore (IPS) algorithm, single-cell analysis, and functional experiment. Results: An immune-related prognostic signature and associated nomogram were constructed and validated. Among the genes constituting the signature, interleukin 1 receptor type II (IL1R2) was identified as the gene occupying the most paramount position in the risk signature. Meanwhile, knockdown of IL1R2 significantly inhibited the proliferation, invasion, and migration ability of pancreatic cancer cells. Additionally, high IL1R2 expression was associated with reduced CD8+ T cell infiltration in pancreatic cancer microenvironment, which may be due to high programmed cell death-ligand-1 (PD-L1) expression in cancer cells. Finally, the IPS algorithm proved that patients with high IL1R2 expression possessed a higher tumor mutation burden and a higher probability of benefiting from immunotherapy. Conclusion: In conclusion, our study constructed an efficient immune-related prognostic signature and identified the key role of IL1R2 in the development of pancreatic cancer, as well as its potential to serve as a biomarker for immunotherapy efficacy prediction for pancreatic cancer.

14.
NPJ Precis Oncol ; 8(1): 109, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769374

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant neoplasm characterized by a poor prognosis and limited therapeutic strategy. The PDAC tumor microenvironment presents a complex heterogeneity, where neutrophils emerge as the predominant constituents of the innate immune cell population. Leveraging the power of single-cell RNA-seq, spatial RNA-seq, and multi-omics approaches, we included both published datasets and our in-house patient cohorts, elucidating the inherent heterogeneity in the formation of neutrophil extracellular traps (NETs) and revealed the correlation between NETs and immune suppression. Meanwhile, we constructed a multi-omics prognostic model that suggested the patients exhibiting downregulated expression of NETs may have an unfavorable outcome. We also confirmed TLR2 as a potent prognosis factor and patients with low TLR2 expression had more effective T cells and an overall survival extension for 6 months. Targeting TLR2 might be a promising strategy to reverse immunosuppression and control tumor progression for an improved prognosis.

16.
J Transl Med ; 22(1): 393, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685045

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with high probability of recurrence and distant metastasis. Liver metastasis is the predominant metastatic mode developed in most pancreatic cancer cases, which seriously affects the overall survival rate of patients. Abnormally activated endoplasmic reticulum stress and lipid metabolism reprogramming are closely related to tumor growth and metastasis. This study aims to construct a prognostic model based on endoplasmic reticulum stress and lipid metabolism for pancreatic cancer, and further explore its correlation with tumor immunity and the possibility of immunotherapy. METHODS: Transcriptomic and clinical data are acquired from TCGA, ICGC, and GEO databases. Potential prognostic genes were screened by consistent clustering and WGCNA methods, and the whole cohort was randomly divided into training and testing groups. The prognostic model was constructed by machine learning method in the training cohort and verified in the test, TCGA and ICGC cohorts. The clinical application of this model and its relationship with tumor immunity were analyzed, and the relationship between endoplasmic reticulum stress and intercellular communication was further explored. RESULTS: A total of 92 characteristic genes related to endoplasmic reticulum stress, lipid metabolism and liver metastasis were identified in pancreatic cancer. We established and validated a prognostic model for pancreatic cancer with 7 signatures, including ADH1C, APOE, RAP1GAP, NPC1L1, P4HB, SOD2, and TNFSF10. This model is considered to be an independent prognosticator and is a more accurate predictor of overall survival than age, gender, and stage. TIDE score was increased in high-risk group, while the infiltration levels of CD8+ T cells and M1 macrophages were decreased. The number and intensity of intercellular communication were increased in the high ER stress group. CONCLUSIONS: We constructed and validated a novel prognostic model for pancreatic cancer, which can also be used as an instrumental variable to predict the prognosis and immune microenvironment. In addition, this study revealed the effect of ER stress on cell-cell communication in the tumor microenvironment.


Assuntos
Estresse do Retículo Endoplasmático , Regulação Neoplásica da Expressão Gênica , Metabolismo dos Lipídeos , Neoplasias Hepáticas , Neoplasias Pancreáticas , Análise de Célula Única , Transcriptoma , Humanos , Estresse do Retículo Endoplasmático/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Metabolismo dos Lipídeos/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/patologia , Transcriptoma/genética , Prognóstico , Masculino , Feminino , Pessoa de Meia-Idade , Perfilação da Expressão Gênica , Reprodutibilidade dos Testes , Estudos de Coortes
17.
BMJ Open ; 14(4): e078516, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38569703

RESUMO

INTRODUCTION: The surgical intervention approach to insulinomas in proximity to the main pancreatic duct remains controversial. Standard pancreatic resection is recommended by several guidelines; however, enucleation (EN) still attracts surgeons with less risk of late exocrine/endocrine insufficiency, despite a higher postoperative pancreatic fistula (POPF) rate. Recently, the efficacy and safety of preoperative pancreatic stent placement before the EN have been demonstrated. Thus, a multicentre open-label study is being conducted to evaluate the efficacy and safety of stent placement in improving the outcome of EN of insulinomas in proximity to the main pancreatic duct. METHODS AND ANALYSIS: This is a prospective, randomised, open-label, superiority clinical trial conducted at multiple tertiary centres in China. The major eligibility criterion is the presence of insulinoma located in the head and neck of the pancreas in proximity (≤2 mm) to the main pancreatic duct. Blocked randomisation will be performed to allocate patients into the stent EN group and the direct EN group. Patients in the stent EN group will go through stent placement by the endoscopist within 24 hours before the EN surgery, whereas other patients will receive EN surgery directly. The primary outcome is the assessment of the superiority of stent placement in reducing POPF rate measured by the International Study Group of Pancreatic Surgery standard. Both interventions will be performed in an inpatient setting and regular follow-up will be performed. The primary outcome (POPF rate) will be tested for superiority with the Χ2 test. The difference in secondary outcomes between the two groups will be analysed using appropriate tests. ETHICS AND DISSEMINATION: The study has been approved by the Peking Union Medical College Hospital Institutional Review Board (K23C0195), Ruijin Hospital Ethics Committee (2023-314), Peking University First Hospital Ethics Committee (2024033-001), Institutional Review Board of Xuanwu Hospital of Capital Medical University (2023223-002), Ethics Committee of the First Affiliated Hospital of Xi'an Jiaotong University (XJTU1AF2023LSK-473), Institutional Review Board of Tongji Medical College Tongji Hospital (TJ-IRB202402059), Ethics Committee of Tongji Medical College Union Hospital (2023-0929) and Shanghai Cancer Center Institutional Review Board (2309282-16). The results of the study will be published in an international peer-reviewed journal. TRIAL REGISTRATION NUMBER: NCT05523778.


Assuntos
Insulinoma , Neoplasias Pancreáticas , Humanos , Insulinoma/cirurgia , Estudos Prospectivos , China , Pâncreas , Ductos Pancreáticos/cirurgia , Fístula Pancreática/etiologia , Fístula Pancreática/prevenção & controle , Complicações Pós-Operatórias , Stents , Neoplasias Pancreáticas/cirurgia , Hospitais , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
18.
Am J Surg Pathol ; 48(5): 511-520, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38567813

RESUMO

The diagnosis of solid pseudopapillary neoplasm of the pancreas (SPN) can be challenging due to potential confusion with other pancreatic neoplasms, particularly pancreatic neuroendocrine tumors (NETs), using current pathological diagnostic markers. We conducted a comprehensive analysis of bulk RNA sequencing data from SPNs, NETs, and normal pancreas, followed by experimental validation. This analysis revealed an increased accumulation of peroxisomes in SPNs. Moreover, we observed significant upregulation of the peroxisome marker ABCD1 in both primary and metastatic SPN samples compared with normal pancreas and NETs. To further investigate the potential utility of ABCD1 as a diagnostic marker for SPN via immunohistochemistry staining, we conducted verification in a large-scale patient cohort with pancreatic tumors, including 127 SPN (111 primary, 16 metastatic samples), 108 NET (98 nonfunctional pancreatic neuroendocrine tumor, NF-NET, and 10 functional pancreatic neuroendocrine tumor, F-NET), 9 acinar cell carcinoma (ACC), 3 pancreatoblastoma (PB), 54 pancreatic ductal adenocarcinoma (PDAC), 20 pancreatic serous cystadenoma (SCA), 19 pancreatic mucinous cystadenoma (MCA), 12 pancreatic ductal intraepithelial neoplasia (PanIN) and 5 intraductal papillary mucinous neoplasm (IPMN) samples. Our results indicate that ABCD1 holds promise as an easily applicable diagnostic marker with exceptional efficacy (AUC=0.999, sensitivity=99.10%, specificity=100%) for differentiating SPN from NET and other pancreatic neoplasms through immunohistochemical staining.


Assuntos
Carcinoma Ductal Pancreático , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Pâncreas/patologia , Carcinoma Ductal Pancreático/patologia , Tumores Neuroendócrinos/diagnóstico , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Ductos Pancreáticos/química , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP
19.
RSC Adv ; 14(13): 8709-8717, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38495976

RESUMO

This work investigates the influence of catalyst HZSM-5 on the isomerization of 2,5-dichlorotoluene (2,5-DCT) to produce 2,4-dichlorotoluene (2,4-DCT). We observe that hydrothermal treatment leads to a decrease in total acidity and Brønsted/Lewis ratio of HZSM-5 while generating new secondary pores. These characteristics result in excellent selectivity for post-hydrothermal modified HZSM-5 in the isomerization reaction from 2,5-DCT to 2,4-DCT. Under atmospheric pressure at 350 °C, unmodified HZSM-5 achieves a selectivity of 66.4% for producing 2,4-DCT, however after hydrothermal modification the selectivity increases to 78.7%. Density Functional Theory (DFT) calculations explore the thermodynamic aspects of adsorption between the HZSM-5 surface and 2,4-DCT. The kinetic perspective investigates the mechanism involving proton attack on the methyl group of 2,5-DCT followed by rearrangement leading to formation of 2,4-DCT during isomerization. The consistency between simulation and experimental results provides evidence for the feasibility of isomerizing 2,5-DCT to 2,4-DCT. This work fills the gap in the low value-added product 2,5-DCT isomer conversion, indicating its significant practical application potential and provides a valuable reference and guidelines for industrial research in this field.

20.
MedComm (2020) ; 5(2): e495, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38374872

RESUMO

Epigenetic modifications are defined as heritable changes in gene activity that do not involve changes in the underlying DNA sequence. The oncogenic process is driven by the accumulation of alterations that impact genome's structure and function. Genetic mutations, which directly disrupt the DNA sequence, are complemented by epigenetic modifications that modulate gene expression, thereby facilitating the acquisition of malignant characteristics. Principals among these epigenetic changes are shifts in DNA methylation and histone mark patterns, which promote tumor development and metastasis. Notably, the reversible nature of epigenetic alterations, as opposed to the permanence of genetic changes, positions the epigenetic machinery as a prime target in the discovery of novel therapeutics. Our review delves into the complexities of epigenetic regulation, exploring its profound effects on tumor initiation, metastatic behavior, metabolic pathways, and the tumor microenvironment. We place a particular emphasis on the dysregulation at each level of epigenetic modulation, including but not limited to, the aberrations in enzymes responsible for DNA methylation and histone modification, subunit loss or fusions in chromatin remodeling complexes, and the disturbances in higher-order chromatin structure. Finally, we also evaluate therapeutic approaches that leverage the growing understanding of chromatin dysregulation, offering new avenues for cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA