Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 382
Filtrar
1.
J Control Release ; 375: 698-711, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39313100

RESUMO

Streptococcus pneumoniae (S. pneumoniae) is a major cause of community-acquired pneumonia. Current standard clinical therapies mainly focus on combating S. pneumoniae through antibiotics. However, the limited delivery of antibiotics and the undetoxified hydrogen peroxide (H2O2) virulence factor secreted by S. pneumoniae impede the therapeutic outcomes. Here we report an inhalable catalase (CAT)-tannic acid (TA) nanoassembly for local antibiotic (levofloxacin) delivery and simultaneously neutralizing the secreted H2O2 virulence factors to treat pneumococcal pneumonia. After aerosol inhalation, the inhalable formulation (denoted as CT@LVX) effectively accumulates in lung tissues through TA-mediated mucoadhesion. CAT can reduce alveolar epithelial cells apoptosis by catalyzing the decomposition of accumulated H2O2 in the infected lung tissues. In synergy with antibiotic LVX-mediated S. pneumoniae elimination, CT@LVX significantly decreases lung injury companied with reduced inflammatory, resulting in 100 % survival of mice with pneumonia. In a clinically isolated S. pneumoniae strain-induced pneumonia mouse model, CT@LVX also shows superior outcomes compared to the traditional antibiotic treatment, highlighting its potential clinical application prospects.

3.
Sci Adv ; 10(33): eado3919, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39141742

RESUMO

Postoperative rehemorrhage following intracerebral hemorrhage surgery is intricately associated with a high mortality rate, yet there is now no effective clinical treatment. In this study, we developed a hemoglobin (Hb)-responsive in situ implantable DNA hydrogel comprising Hb aptamers cross-linked with two complementary chains and encapsulating deferoxamine mesylate (DFO). Functionally, the hydrogel generates signals upon postoperative rehemorrhage by capturing Hb, demonstrating a distinctive "self-diagnosis" capability. In addition, the ongoing capture of Hb mediates the gradual disintegration of the hydrogel, enabling the on-demand release of DFO without compromising physiological iron-dependent functions. This process achieves self-treatment by inhibiting the ferroptosis of neurocytes. In a collagenase and autologous blood injection model-induced mimic postoperative rehemorrhage model, the hydrogel exhibited a 5.58-fold increase in iron absorption efficiency, reducing hematoma size significantly (from 8.674 to 4.768 cubic millimeters). This innovative Hb-responsive DNA hydrogel not only offers a therapeutic intervention for postoperative rehemorrhage but also provides self-diagnosis feedback, holding notable promise for enhancing clinical outcomes.


Assuntos
Hemorragia Cerebral , Hemoglobinas , Hidrogéis , Hemorragia Cerebral/diagnóstico , Hemorragia Cerebral/tratamento farmacológico , Hidrogéis/química , Hemoglobinas/metabolismo , Animais , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Desferroxamina/química , DNA/metabolismo , Humanos , Masculino , Ratos , Modelos Animais de Doenças , Ferroptose/efeitos dos fármacos , Ferro/metabolismo , Hemorragia Pós-Operatória/etiologia , Hemorragia Pós-Operatória/diagnóstico , Aptâmeros de Nucleotídeos/farmacologia , Aptâmeros de Nucleotídeos/química
4.
Chemosphere ; 364: 143034, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39117083

RESUMO

Bisphenol S (BPS) is a common pollutant in the environment and has posed a potential threat to aquatic animals and human health. To accurately assess the pollution level and ecological risk of BPS, there is an urgent need to establish simple and sensitive detection methods for BPS. In this study, BPS complete antigen was successfully prepared by introducing methyl 4-bromobutyrate and coupling bovine serum albumin (BSA). The monoclonal antibody against BPS (anti-BPS mAb) with high affinity (1: 256,000) was developed based on the BPS complete antigen, which showed low cross-reactivity with BPS structural analogues. Then, an electrochemical immunosensor was constructed to detect BPS using multi-walled carbon nanotubes and gold nanoflower composites as signal amplification elements and using anti-BPS mAb as the probe. The electrochemical immunosensor had a linear range from 1 to 250 ng⋅mL-1 and a limit of detection (LOD) down to 0.6 ng⋅mL-1. Additionally, a more stable and sensitive lateral flow immunoassay (LFIA) for BPS was developed based on iridium oxide nanoparticles, with a visual detection limit of 1 ng⋅mL-1, which was 10 times lower than that of classical Au-NPs LFIA. After evaluation of their stability and specificity, the reliability of these two methods were further validated by measuring BPS concentrations in the water and fish tissues. Thus, this study provides sensitive, robust and rapid methods for the detection of BPS in the environment and organisms, which can provide a methodological reference for monitoring environmental contaminants.


Assuntos
Técnicas Eletroquímicas , Irídio , Limite de Detecção , Fenóis , Sulfonas , Imunoensaio/métodos , Fenóis/análise , Fenóis/química , Irídio/química , Técnicas Eletroquímicas/métodos , Sulfonas/química , Sulfonas/análise , Ouro/química , Nanopartículas Metálicas/química , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Animais , Técnicas Biossensoriais/métodos , Poluentes Químicos da Água/análise , Nanotubos de Carbono/química , Nanopartículas/química
5.
J Control Release ; 374: 140-153, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39117113

RESUMO

Inflammatory bowel diseases (IBD) are often associated with dysregulated gut microbiota and excessive inflammatory microenvironment. Probiotic therapy combined with inflammation management is a promising approach to alleviate IBD, but the efficacy is hindered by the inferior colonization of probiotics in mucus-depleted inflammatory bowel segments. Here, we present modified montmorillonite armed probiotic Escherichia coli Nissle 1917 (MMT-Fe@EcN) with enhanced intestinal colonization and hydrogen sulfide (H2S) scavenging for synergistic alleviation of IBD. The montmorillonite layer that can protect EcN against environmental assaults in oral delivery and improve on-site colonization of EcN in the mucus-depleted intestinal segment due to its strong adhesive capability and electronegativity, with a 22.6-fold increase in colonization efficiency compared to EcN. Meanwhile, MMT-Fe@EcN can manage inflammation by scavenging H2S, which allows for enhancing probiotic viability and colonization for restoring the gut microbiota. As a result, MMT-Fe@EcN exhibits extraordinary therapeutic effects in the dextran sulfate sodium-induced mouse colitis models, including alleviating intestinal inflammation and restoring disrupted intestinal barrier function, and gut microbiota. These findings provide a promising strategy for clinical IBD treatment and potentially other mucus-depletion-related diseases.


Assuntos
Bentonita , Colite , Sulfato de Dextrana , Escherichia coli , Microbioma Gastrointestinal , Sulfeto de Hidrogênio , Camundongos Endogâmicos C57BL , Muco , Probióticos , Animais , Probióticos/administração & dosagem , Probióticos/uso terapêutico , Sulfeto de Hidrogênio/metabolismo , Colite/induzido quimicamente , Colite/terapia , Masculino , Muco/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Humanos , Intestinos/microbiologia
6.
Adv Sci (Weinh) ; 11(33): e2402199, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38962939

RESUMO

Therapeutic cancer vaccines are among the first FDA-approved cancer immunotherapies. Among them, it remains a major challenge to achieve robust lymph-node (LN) accumulation. However, delivering cargo into LN is difficult owing to the unique structure of the lymphatics, and clinical responses have been largely disappointing. Herein, inspired by the Migrated-DCs homing from the periphery to the LNs, an injectable hydrogel-based polypeptide vaccine system is described for enhancing immunostimulatory efficacy, which could form a local niche of vaccine "hitchhiking" on DCs. The OVA peptide modified by lipophilic DSPE domains in the hydrogel is spontaneously inserted into the cell membrane to achieve "antigen anchoring" on DCs in vivo. Overall, OVA peptide achieves active access LNs through recruiting and "hitchhiking" subcutaneous Migrated-DCs. Remarkably, it is demonstrated that the composite hydrogel enhances LNs targeting efficacy by approximately six-fold compared to free OVA peptide. Then, OVA peptide can be removed from the cell surface under a typical acidic microenvironment within the LNs, further share them with LN-resident APCs via the "One-to-Many" strategy (One Migrated-DC corresponding to Many LN-resident APCs), thereby activating powerful immune stimulation. Moreover, the hydrogel vaccine exhibits significant tumor growth inhibition in melanoma and inhibits pulmonary metastatic nodule formation.


Assuntos
Vacinas Anticâncer , Células Dendríticas , Linfonodos , Animais , Camundongos , Células Dendríticas/imunologia , Vacinas Anticâncer/imunologia , Linfonodos/imunologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Hidrogéis , Imunoterapia/métodos , Ovalbumina/imunologia , Feminino
7.
Chemosphere ; 363: 142835, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996981

RESUMO

Color vision, initiated from the cone photoreceptors, is essential for fish to obtain environmental information. Although the visual impairment of triazine herbicide prometryn has been reported, data on the effect of herbicide such as prometryn on natural color sensitivity of fish is scarce. Here, zebrafish were exposed to prometryn (0, 1, 10, and 100 µg/L) from 2 h post-fertilization to 160 days post-fertilization, to explore the effect and underlying mechanism of prometryn on color perception. The results indicated that 10 and 100 µg/L prometryn shortened the height of red-green cone cells, and down-regulated expression of genes involved in light transduction pathways (arr3a, pde6h) and visual cycle (lrata, rpe65a); meanwhile, 1 µg/L prometryn increased all-trans-retinoic acid levels in zebrafish eyes, and up-regulated the expression of genes involved in retinoid metabolism (rdh10b, aldh1a2, cyp26a1), finally leading to weakened red and green color perception of female zebrafish. This study first clarified how herbicide such as prometryn affected color vision of a freshwater fish after a long-term exposure from both morphological and functional disruption, and its hazard on color vision mediated-ecologically relevant tasks should not be ignored.


Assuntos
Herbicidas , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Feminino , Herbicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Visão de Cores/efeitos dos fármacos , Triazinas/toxicidade , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/metabolismo , Percepção de Cores/efeitos dos fármacos
8.
J Hazard Mater ; 477: 135270, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39053056

RESUMO

Triazine herbicides are widely used in agriculture and have become common pollutants in marine environments. However, the spatiotemporal distribution characteristics and water quality criteria (WQC) of triazine herbicides are still unclear. This study found that triazine herbicides had a high detection rate of 100 % in surface seawater of Laizhou Bay, China, with average concentrations of 217.61, 225.13, 21.97, and 1296.72 ng/L in March, May, August, and October, respectively. Moreover, estuaries were important sources, and especially the Yellow River estuary exhibited the highest concentrations of 16,115.86 ng/L in October. The 10 triazine herbicides were detected in the sediments of Laizhou Bay, with a concentration ranging from 0.14-1.68 µg/kg. Atrazine and prometryn accounted for 33.41 %-59.10 % and 28.93 %-50.06 % of the total triazine herbicides in the seawater, and prometryn had the highest proportion (63.50 %) in the sediments. Correlation analysis revealed that triazine herbicides led to the loss of plankton biodiversity, which further decreased the dissolved oxygen. In addition, this study collected 45 acute toxicity data and 22 chronic toxicity data of atrazine, 16 acute toxicity data of prometryn, and supplemented with toxicity experiments of prometryn on marine organisms. Based on the toxicity database, the WQCs of atrazine and prometryn were derived using species sensitivity distribution. The overall risk probability of atrazine and prometryn were both less than 1.75 % in the Laizhou Bay, indicating an acceptable risk. This study not only clarified the pollution status and ecological risk of triazine herbicides, but also provided scientific basis for their environmental management standards.


Assuntos
Baías , Monitoramento Ambiental , Sedimentos Geológicos , Herbicidas , Água do Mar , Triazinas , Poluentes Químicos da Água , Herbicidas/análise , Herbicidas/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Triazinas/análise , Triazinas/toxicidade , Água do Mar/química , Água do Mar/análise , China , Medição de Risco , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Animais , Qualidade da Água , Biodiversidade
9.
Ecotoxicol Environ Saf ; 282: 116747, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39024946

RESUMO

Salinization is a severe threat to agriculture and the environment in many areas, and the same in Qaidam Basin, Qinghai Province, Northwestern China. Microorganisms have an important influence on regulating the biochemical cycles of ecosystems; however, systematic research exploring microbial diversity and interactions with saline-soil ecosystems' environmental variables remains scarce. Thus, 16 S rRNA high-throughput sequencing was performed in this paper to characterize microbial diversity under different levels of salinized soils: non-salinized (NS, 2.25 g/L), moderately salinized (MS, 6.14 g/L) and highly salinized (HS, 9.82 g/L). The alpha diversity results showed that the HS soil was significantly different from the NS and MS soils. An analysis of similarity (ANOSIM) and a principal co-ordinates analysis (PCoA) indicated that NS and MS clustered closely while HS separated from the other two. Significant differences in microbial composition were observed at the taxonomic level. Proteobacteria (42.29-79.23 %) were the most abundant phyla in the studied soils. Gammaproteobacteria (52.49 and 66.61 %) had higher abundance in the MS and HS soils at the class level; Methylophaga and Pseudomonas were the predominant bacteria in the HS soil; and Azotobacter and Methylobacillus were abundant in the MS soil. Most genera belonging to Proteobacteria and Actinobacteria were detected via a linear discriminate analysis (LDA) effect size (LEfSe) analysis, which indicated that microbes with the ability to degrade organic matter and accomplish nutrient cycling can be well-adapted to salt conditions. Further analyses (redundancy analysis and Mantel test) showed that the microbial communities were mainly related to the soil salinity, electrical conductivity (EC1:5), total phosphorus (TP) and ammonia nitrogen (NH4+-N). Overall, the findings of the study can provide insights for better understanding the dominant indigenous microbes and their roles in biochemical cycles in different saline soils in the Qaidam Basin, Qinghai Province, China. The researches related to microbial community under typical poplar species should further clarify the mechanism of plant-microbial interaction and benefit for microbial utilization in salt soil remediation.


Assuntos
Populus , Salinidade , Microbiologia do Solo , Solo , China , Populus/microbiologia , Solo/química , Microbiota , RNA Ribossômico 16S/genética , Bactérias/classificação , Bactérias/genética , Ecossistema
10.
J Hazard Mater ; 476: 135120, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38976960

RESUMO

The decommissioning of nuclear reactors is a global concern, in part because of the generation of radioactive aerosols that can lead to internal radiation exposure. At present, radioactive aerosols generated during nuclear decommissioning have not been actively studied, and data collected from the actual decommissioning are limited. This paper presents a study of radioactive aerosols generated during the pre-decommission phase of an experimental shielding reactor. Among all the on-site operations, cutting resulted in the highest levels of radioactivity. Plasma arc cutting, in particular, had a maximum gross α and ß radioactivity over 0.10 and 0.14 Bq/m3, respectively. Assumed AMAD (activity median aerodynamic diameter) values are employed to assess the impact of particle size on the internal exposure dose resulting from the inhalation of 137Cs aerosols. This assessment is based on the Human Respiratory Tract Model of International Commission on Radiological Protection. When cutting stainless steel by plasma arc, the internal exposure dose caused by 137Cs aerosols with an AMAD of 0.1 µm is estimated to be nearly four times as that of aerosols with an AMAD of 10 µm. Results show that the internal exposure dose is highly dependent on the AMAD, implying the importance of measuring size-related parameters of radioactive aerosols in the future nuclear decommissioning. This study has revealed some characteristics of radioactive aerosols released in decommissioning operations, which can serve as a valuable reference for controlling and removing aerosols during the decommissioning of nuclear facilities.

11.
Commun Biol ; 7(1): 844, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987655

RESUMO

Estrogen excess in females has been linked to a diverse array of chronic and acute diseases. Emerging research shows that exposure to estrogen-like compounds such as bisphenol S leads to increases in 17ß-estradiol levels, but the mechanism of action is unclear. The aim of this study was to reveal the underlying signaling pathway-mediated mechanisms, target site and target molecule of action of bisphenol S causing excessive estrogen synthesis. Human ovarian granulosa cells SVOG were exposed to bisphenol S at environmentally relevant concentrations (1 µg/L, 10 µg/L, and 100 µg/L) for 48 h. The results confirms that bisphenol S accumulates mainly on the cell membrane, binds to follicle stimulating hormone receptor (FSHR) located on the cell membrane, and subsequently activates the downstream cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) signaling pathway, leading to enhanced conversion of testosterone to 17ß-estradiol. This study deepens our knowledge of the mechanisms of environmental factors in pathogenesis of hyperestrogenism.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , AMP Cíclico , Estrogênios , Fenóis , Receptores do FSH , Transdução de Sinais , Sulfonas , Fenóis/toxicidade , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , AMP Cíclico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Feminino , Estrogênios/metabolismo , Receptores do FSH/metabolismo , Receptores do FSH/genética , Sulfonas/farmacologia , Estradiol/metabolismo , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos
12.
Aquat Toxicol ; 273: 106968, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851028

RESUMO

The thyroid disrupting chemicals (TDCs) have raised great concerns due to their adverse impacts on thyroid hormones (THs). In this study, we investigated the thyroid-disrupting effects of bisphenol F (BPF) and bisphenol S (BPS), two major BPA substitutes, on adult zebrafish (Danio rerio). Firstly, anti-transthyretin (TTR) monoclonal antibody (anti-TTR mAb) was prepared and used to establish an indirect ELISA, which had a working range of 15.6∼1000 ng/mL of a detection limit of 6.1 ng/mL. The immunoassays based on anti-TTR mAb showed that exposure to BPF (10 and 100 µg/L) and BPS (100 µg/L) significantly elevated the levels of TTR protein in the plasma, liver, and brain tissues. Moreover, immunofluorescence showed that 100 µg/L BPF and BPS induced the production of TTR protein in liver and brain tissues. In addition, BPF and BPS increased THs levels and damaged thyroid tissue structure in adult female zebrafish. Especially, 100 µg/L BPF significantly increased T4 and T3 levels by 2.05 and 1.14 times, and induced pathological changes of thyroid follicles. The changes in the expression levels of genes involved in the hypothalamus-pituitary-thyroid (HPT) axis further illustrated that BPF and BPS had significant adverse effects on THs homeostasis and thyroid function in zebrafish. Therefore, TTR immunoassays could be used for the evaluation of thyroid-disrupting effects in fish and BPF exhibited greater disruption than BPS.


Assuntos
Anticorpos Monoclonais , Compostos Benzidrílicos , Disruptores Endócrinos , Fenóis , Sulfonas , Glândula Tireoide , Poluentes Químicos da Água , Peixe-Zebra , Animais , Fenóis/toxicidade , Sulfonas/toxicidade , Glândula Tireoide/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Disruptores Endócrinos/toxicidade , Compostos Benzidrílicos/toxicidade , Anticorpos Monoclonais/toxicidade , Feminino , Fígado/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Hormônios Tireóideos/sangue , Imunoensaio
14.
Life Sci ; 352: 122855, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38908787

RESUMO

In recent years, the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based genome editing toolkit has been widely used to modify the genome sequence of organisms. As the CRISPR toolbox continues to grow and new CRISPR-associated (Cas) proteins are discovered, its applications have expanded beyond conventional genome editing. This now encompass epigenetic editing, gene expression control, and various other functions. Notably, these advancements are finding practical application in the treatment of brain diseases. Furthermore, the amalgamation of CRISPR and Chimeric Antigen Receptor T-cell (CAR-T) technologies has emerged as a potential approach for disease treatment. With this in mind, this review commences by offering a comprehensive overview of recent advancements in CRISPR gene editing tools. This encompasses an exploration of various Cas proteins, gene expression control, epigenetic editing, base editing and primer editing. Additionally, we present an in-depth examination of the manifold applications of these innovative CRISPR tools in the realms of brain therapeutics, such as neurodegenerative diseases, neurological syndromes and genetic disorders, epileptic disorders, and brain tumors, also explore the pathogenesis of these diseases. This includes their utilization in modeling, gene screening, therapeutic gene editing, as well as their emerging synergy with CAR-T technology. Finally, we discuss the remaining technical challenges that need to be addressed for effective utilization of CRISPR tools in disease treatment.


Assuntos
Encefalopatias , Sistemas CRISPR-Cas , Edição de Genes , Terapia Genética , Humanos , Edição de Genes/métodos , Animais , Encefalopatias/terapia , Encefalopatias/genética , Terapia Genética/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Encéfalo/metabolismo , Epigênese Genética
16.
Acta Pharm Sin B ; 14(5): 2317-2332, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38799627

RESUMO

Autophagy is an important factor in reducing the efficacy of tumor phototherapy (including PTT and PDT). Accurate regulation of autophagy in tumor cells is a new strategy to improve the anti-tumor efficiency of PTT/PDT. This project intended to construct a tumor-activated autophagy regulator to efficiently block PTT/PDT-induced autophagy and realize synergistic sensitization to tumor phototherapy. To achieve this goal, we first synthesized TRANSFERRIN (Tf) biomimetic mineralized nano-tellurium (Tf-Te) as photosensitizer and then used disulfide bond reconstruction technology to induce Tf-Te self-assembly. The autophagy inhibitor hydroxychloroquine (HCQ) and iron ions carried by Tf were simultaneously loaded to prepare a tumor-responsive drug reservoir Tf-Te/HCQ. After entering breast cancer cells through the "self-guidance system", Tf-Te/HCQ can generate hyperpyrexia and ROS under NIR laser irradiation, to efficiently induce PTT/PDT effect. Meanwhile, the disulfide bond broke down in response to GSH, and the nanoparticles disintegrated to release Fe2+ and HCQ at fixed points. They simultaneously induce lysosomal alkalinization and increased osmotic pressure, effectively inhibit autophagy, and synergistically enhance the therapeutic effect of phototherapy. In vivo anti-tumor results have proved that the tumor inhibition rate of Tf-Te/HCQ can be as high as 88.6% on 4T1 tumor-bearing mice. This multifunctional drug delivery system might provide a new alternative for more precise and effective tumor phototherapy.

17.
Adv Sci (Weinh) ; 11(17): e2305877, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38444306

RESUMO

Precise and efficient regulation of microglia is vital for ischemic stroke therapy and prognosis. The infiltration of neutrophils into the brain provides opportunities for regulatory drugs across the blood-brain barrier, while hindered by neutrophil extracellular traps (NETs) and targeted delivery of intracerebral drugs to microglia. This study reports an efficient neutrophil hijacking nanoplatform (referred to as APTS) for targeted A151 (a telomerase repeat sequence) delivery to microglia without the generation of NETs. In the middle cerebral artery occlusion (MCAO) mouse model, the delivery efficiency to ischemic stroke tissues increases by fourfold. APTS dramatically reduces the formation of NETs by 2.2-fold via reprogramming NETosis to apoptosis in neutrophils via a reactive oxygen species scavenging-mediated citrullinated histone 3 inhibition pathway. Noteworthy, A151 within neutrophils is repackaged into apoptotic bodies following the death pattern reprogramming, which, when engulfed by microglia, polarizes microglia to an anti-inflammatory M2 phenotype. After four times treatment, the cerebral infarction area in the APTS group decreases by 5.1-fold. Thus, APTS provides a feasible, efficient, and practical drug delivery approach for reshaping the immune microenvironment and treating brain disorders in the central nervous system.


Assuntos
Modelos Animais de Doenças , Armadilhas Extracelulares , AVC Isquêmico , Microglia , Neutrófilos , Animais , Microglia/metabolismo , Microglia/efeitos dos fármacos , Camundongos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , AVC Isquêmico/imunologia , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Masculino , Nanopartículas , Camundongos Endogâmicos C57BL
18.
Asian J Pharm Sci ; 19(1): 100888, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38434719

RESUMO

Induction of tumor cell senescence has become a promising strategy for anti-tumor immunotherapy, but fibrotic matrix severely blocks senescence inducers penetration and immune cells infiltration. Herein, we designed a cancer-associated fibroblasts (CAFs) triggered structure-transformable nano-assembly (HSD-P@V), which can directionally deliver valsartan (Val, CAFs regulator) and doxorubicin (DOX, senescence inducer) to the specific targets. In detail, DOX is conjugated with hyaluronic acid (HA) via diselenide bonds (Se-Se) to form HSD micelles, while CAFs-sensitive peptide is grafted onto the HSD to form a hydrophilic polymer, which is coated on Val nanocrystals (VNs) surface for improving the stability and achieving responsive release. Once arriving at tumor microenvironment and touching CAFs, HSD-P@V disintegrates into VNs and HSD micelles due to sensitive peptide detachment. VNs can degrade the extracellular matrix, leading to the enhanced penetration of HSD. HSD targets tumor cells, releases DOX to induce senescence, and recruits effector immune cells. Furthermore, senescent cells are cleared by the recruited immune cells to finish the integrated anti-tumor therapy. In vitro and in vivo results show that the nano-assembly remarkably inhibits tumor growth as well as lung metastasis, and extends tumor-bearing mice survival. This work provides a promising paradigm of programmed delivering multi-site nanomedicine for cancer immunotherapy.

19.
ACS Nano ; 18(12): 8971-8987, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38497600

RESUMO

Immune checkpoint blockade (ICB) therapy has been approved for breast cancer (BC), but clinical response rates are limited. Recent studies have shown that commensal microbes colonize a variety of tumors and are closely related to the host immune system response. Here, we demonstrated that Fusobacterium nucleatum (F.n), which is prevalent in BC, creates an immunosuppressive tumor microenvironment (ITME) characterized by a high-influx of myeloid cells that hinders ICB therapy. Administering the antibiotic metronidazole in BC can deplete F.n and remodel the ITME. To prevent an imbalance in the systemic microbiota caused by antibiotic administration, we designed a biomimetic nanovehicle for on-site antibiotic delivery inspired by F.n homing to BC. Additionally, ferritin-nanocaged doxorubicin was coloaded into this nanovehicle, as immunogenic chemotherapy has shown potential for synergy with ICB. It has been demonstrated that this biomimetic nanovehicle can be precisely homed to BC and efficiently eliminate intratumoral F.n without disrupting the diversity and abundance of systemic microbiota. This ultimately remodels the ITME, improving the therapeutic efficacy of the PD-L1 blocker with a tumor inhibition rate of over 90% and significantly extending the median survival of 4T1 tumor-bearing mice.


Assuntos
Fusobacterium nucleatum , Neoplasias , Animais , Camundongos , Antígeno B7-H1 , Biomimética , Antibacterianos , Imunossupressores , Microambiente Tumoral
20.
Food Chem Toxicol ; 187: 114550, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467300

RESUMO

BACKGROUND: The effect of human 8-Oxoguanine DNA Glycosylase (hOGG1) on exogenous chemicals in esophageal squamous cell carcinoma (ESCC) remain unclear. The study plans to determine hOGG1 expression levels in ESCC and possible interactions with known environmental risk factors in ESCC. MATERIAL AND METHODS: We analyzed levels of exposure to urinary nitrosamines in volunteers from high and low prevalence areas by GC-MS. And we performed the interaction between hOGG1 gene and nitrosamine disinfection by-products by analyzing hOGG1 gene expression in esophageal tissues. RESULTS: In ESCC, nitrosamine levels were significantly increased and hOGG1 mRNA expression levels were significantly decreased. There was a statistically significant interaction between reduced hOGG1 mRNA levels and non-tap drinking water sources in ESCC. The apparent indirect association between ESCC and NMEA indicated that 33.4% of the association between ESCC and NMEA was mediated by hOGG1. CONCLUSION: In populations which exposed to high levels of environmental pollutants NDMA, low expression of hOGG1 may promote the high incidence of esophageal cancer in Huai'an. hOGG1 may be a novel mediator in nitrosamine-induced esophageal tumorigenesis.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Nitrosaminas , Humanos , Neoplasias Esofágicas/induzido quimicamente , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/induzido quimicamente , Carcinoma de Células Escamosas do Esôfago/complicações , Nitrosaminas/toxicidade , Transformação Celular Neoplásica , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA