Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
1.
Molecules ; 29(17)2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39274903

RESUMO

The widespread environmental contamination resulting from the misuse of tetracycline antibiotics (TCs) has garnered significant attention and study by scholars. Photocatalytic technology is one of the environmentally friendly advanced oxidation processes (AOPs) that can effectively solve the problem of residue of TCs in the water environment. This study involved the synthesis of the heterogeneous magnetic photocatalytic material of CoFe2O4/NaBiO3 via the solvothermal method, and it was characterized using different characterization techniques. Then, the photocatalytic system under visible light (Vis) was coupled with peroxymonosulfate (PMS) to explore the performance and mechanism of degradation of tetracycline hydrochloride (TCH) in the wastewater. The characterization results revealed that CoFe2O4/NaBiO3 effectively alleviated the agglomeration phenomenon of CoFe2O4 particles, increased the specific surface area, effectively narrowed the band gap, expanded the visible light absorption spectrum, and inhibited recombination of photogenerated electron-hole pairs. In the Vis+CoFe2O4/NaBiO3+PMS system, CoFe2O4/NaBiO3 effectively activated PMS to produce hydroxyl radicals (·OH) and sulfate radicals (SO4-). Under the conditions of a TCH concentration of 10 mg/L-1, a catalyst concentration of 1 g/L-1 and a PMS concentration of 100 mg/L-1, the degradation efficiency of TCH reached 94% after 100 min illumination. The degradation of TCH was enhanced with the increase in the CoFe2O4/NaBiO3 and PMS dosage. The solution pH and organic matter had a significant impact on TCH degradation. Notably, the TCH degradation efficiency decreased inversely with increasing values of these parameters. The quenching experiments indicated that the free radicals contributing to the Vis+CoFe2O4/NaBiO3+PMS system were ·OH followed by SO4-, hole (h+), and the superoxide radical (O2-). The main mechanism of PMS was based on the cycle of Co3+ and Co2+, as well as Fe3+ and Fe2+. The cyclic tests and characterization by XRD and FT-IR revealed that CoFe2O4/NaBiO3 had good degradation stability. The experimental findings can serve as a reference for the complete removal of antibiotics from wastewater.


Assuntos
Cobalto , Compostos Férricos , Sulfatos , Tetraciclina , Poluentes Químicos da Água , Tetraciclina/química , Cobalto/química , Catálise , Sulfatos/química , Compostos Férricos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Águas Residuárias/química , Luz , Oxirredução , Antibacterianos/química , Fotólise , Peróxidos , Compostos de Sódio
2.
J Am Chem Soc ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39327912

RESUMO

The amyloid fibrils of α-synuclein (α-syn) are crucial in the pathology of Parkinson's disease (PD), with the intrinsically disordered region (IDR) of its C-terminal playing a key role in interacting with receptors like LAG3 and RAGE, facilitating pathological neuronal spread and inflammation. In this study, we identified Givinostat (GS) as an effective inhibitor that disrupts the interaction of α-syn fibrils with receptors such as LAG3 and RAGE through high-throughput screening. By exploring the structure-activity relationship and optimizing GS, we developed several lead compounds, including GSD-16-24. Utilizing solution-state and solid-state NMR, along with cryo-EM techniques, we demonstrated that GSD-16-24 binds directly to the C-terminal IDR of α-syn monomer and fibril, preventing the fibril from binding to the receptors. Furthermore, GSD-16-24 significantly inhibits the association of α-syn fibrils with membrane receptors, thereby reducing neuronal propagation and pro-inflammatory effects of α-syn fibrils. Our findings introduce a novel approach to mitigate the pathological effects of α-syn fibrils by targeting their IDR with small molecules, offering potential leads for the development of clinical drugs to treat PD.

4.
BioDrugs ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39317850

RESUMO

BACKGROUND: Nivolumab (Opdivo®) is the first anti-PD-1 antibody approved in the world. LY01015 is a potential biosimilar of nivolumab. OBJECTIVES: This phase I study aimed to establish the pharmacokinetic equivalence between LY01015 and the original investigational nivolumab (Opdivo®) in healthy Chinese male subjects. Additionally, safety and immunogenicity were assessed. PATIENTS AND METHODS: A randomized, double-blind, parallel-controlled, phase I trial was conducted with 176 healthy male adults receiving a single intravenous infusion of LY01015 or nivolumab at 0.3 mg/kg. Pharmacokinetics, safety, and immunogenicity were evaluated over a 99-day period. The primary pharmacokinetics endpoint was AUC0-∞, and the secondary pharmacokinetic endpoints included AUC0-t and Cmax. Pharmacokinetic bioequivalence was confirmed using standard equivalence margins of 80.00-125.00%. RESULTS: This study is the first to report on the pharmacokinetics, safety, and immunogenicity of Opdivo® in healthy individuals. The pharmacokinetics profiles of LY01015 and Opdivo® were found to be comparable. The geometric mean ratios (90% confidence intervals) for the AUC0-∞, AUC0-t, and Cmax of LY01015 to Opdivo® were 94.49% (90.29-98.88%), 94.92% (88.73-101.54%), and 96.55% (93.32-99.90%), respectively, falling within the conventional bioequivalence criteria of 80.00-125.00%. The safety and immunogenicity were also comparable between the two groups. CONCLUSIONS: LY01015 demonstrated highly similar pharmacokinetics to nivolumab in healthy Chinese male subjects. Both drugs exhibited comparable safety and immunogenicity profiles. TRIAL REGISTRATION: This trial is registered at the Chinese Clinical Trial Registry website ( https://www.chictr.org.cn/ #ChiCTR2200064771).

5.
Toxics ; 12(8)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39195681

RESUMO

Concern is growing about the occurrence of emerging organic contaminants in various eco-environments [...].

6.
Environ Sci Technol ; 58(36): 15984-15996, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39194383

RESUMO

Exposure to bisphenol A (BPA) during gestation and lactation is considered to be a potential risk factor for autism spectrum disorder (ASD) in both humans and animals. As a novel alternative to BPA, 4-hydroxy-4'-isopropoxydiphenylsulfone (BPSIP) is frequently detected in breast milk and placental barrier systems, suggesting potential transmission from the mother to offspring and increased risk of exposure. Gestation and lactation are critical periods for central nervous system development, which are vulnerable to certain environmental pollutants. Herein, we investigated the behavioral impacts and neurobiological effects of early-life exposure to BPSIP (0.02, 0.1, and 0.5 mg/kg body weight/day) in mice offspring. Behavioral studies indicated that BPSIP exposure induced ASD-like behaviors, including elevated anxiety-related behavior and decreased spatial memory, in both male and female pups. A distinct pattern of reduced social novelty was observed only in female offspring, accompanied by significant alterations in antioxidant levels. Transcriptome analysis demonstrated that differentially expressed genes (DEGs) were mainly enriched in pathways related to behaviors and neurodevelopment, which were consistent with the observed phenotype. Besides, a decrease in the protein levels of complex IV (COX IV) across all tested populations suggests a profound impact on mitochondrial function, potentially leading to abnormal energy metabolism in individuals with autism. Additionally, changes in synaptic proteins, evidenced by alterations in synapsin 1 (SYN1) and postsynaptic density protein-95 (PSD95) levels in the cerebellum and hippocampus, support the notion of synaptic involvement. These findings suggest that BPSIP may induce sex-specific neurotoxic effects that involve oxidative stress, energy generation, and synaptic plasticity.


Assuntos
Transtorno do Espectro Autista , Animais , Transtorno do Espectro Autista/induzido quimicamente , Camundongos , Feminino , Comportamento Animal/efeitos dos fármacos , Masculino , Gravidez , Sulfonas
7.
Infect Drug Resist ; 17: 3547-3559, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161467

RESUMO

Purpose: CaoHuangGuiXiang (CHGX) formula is a traditional Chinese medicine for the treatment of Candida-related infection. However, its antifungal mechanisms against the emerging fungal pathogen Candida auris remain unclear. This study aimed to evaluate the antifungal activity of the dichloromethane extract of CHGX (CHGX-DME) and clarified its antifungal mechanims against C. auris. Methods: The major components of CHGX-DME were identified by ultra-performance liquid chromatography tandem mass spectrometry. Then, the minimal inhibitory concentration (MIC) assay and the time-kill kinetic assay were performed to investigate the in vitro antifungal activity of CHGX-DME against C. auris, including 8 isolates of 4 discrete clades and 2 special phenotypes (filamentous and aggregative). Furthermore, the effect of CHGX-DME on biofilm development was examined. In addition, the in vivo toxicity and efficacy of CHGX-DME were evaluated in a Galleria mellonella infection model. Results: First, 20 major compounds in CHGX-DME were detected and characterized. The MIC50% and MIC90% of CHGX-DME against C. auris isolates ranged from 50-200 mg/L and 100-400 mg/L, respectively. At 400 mg/L, CHGX-DME was able to efficiently kill more than 70% and 90% of C. auris cells after 3 hours and 6 hours of treatment, respectively. This notable antifungal activity exhibited a dosage- and time-dependent manner. Moreover, CHGX-DME not only played a critical role in inhibiting the proliferation of filamentous and aggregative cells, but also showed restricting effect on biofilm development in C. auris. Importantly, it significantly improved the survival rate and reduced the fungal burden in G. mellonella infection models, suggesting a remarkable treatment effect against C. auris infection. Conclusion: CHGX-DME exhibited potent antifungal activity against C. auris and significantly ameliorated this fungal infection in the G. mellonella model, confirming that it would be a promising antifungal drug for the troublesome and emerging fungal pathogen C. auris.

8.
Natl Sci Rev ; 11(6): nwae182, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38962715

RESUMO

Accumulation of aggregated α-synuclein (α-syn) in Lewy bodies is the pathological hallmark of Parkinson's disease (PD). Genetic mutations in lipid metabolism are causative for a subset of patients with Parkinsonism. The role of α-syn's lipid interactions in its function and aggregation is recognized, yet the specific lipids involved and how lipid metabolism issues trigger α-syn aggregation and neurodegeneration remain unclear. Here, we found that α-syn shows a preference for binding to lysophospholipids (LPLs), particularly targeting lysophosphatidylcholine (LPC) without relying on electrostatic interactions. LPC is capable of maintaining α-syn in a compact conformation, significantly reducing its propensity to aggregate both in vitro and within cellular environments. Conversely, a reduction in the production of cellular LPLs is associated with an increase in α-syn accumulation. Our work underscores the critical role of LPLs in preserving the natural conformation of α-syn to inhibit improper aggregation, and establishes a potential connection between lipid metabolic dysfunction and α-syn aggregation in PD.

9.
J Chromatogr A ; 1730: 465162, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39018738

RESUMO

As an advanced analytical technology, Ion Chromatography (IC) has been widely used in various fields. At present, it is faced with the challenges of sample complexity and instrument precision. It is necessary to select appropriate pretreatment methods to achieve sample preparation and protect the instruments. Therefore, this paper reviews several commonly used sample pretreatment technologies in IC, focusing on sample digestion and purification techniques. Additionally, we introduce some advanced IC technologies and automatic sample processing devices. We provide a comprehensive summary of the basic principles, primary applications and the advantages and disadvantages of each method. Pretreatment methods should be carefully selected and optimized on the specific characteristics of the sample and the ions to be measured, in order to achieve better analysis results.


Assuntos
Íons , Cromatografia por Troca Iônica/métodos , Humanos , Íons/química
10.
BMC Public Health ; 24(1): 1810, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971726

RESUMO

BACKGROUND: Tooth loss is a common problem that affects many people worldwide. Exploring knowledge, attitude, and practice (KAP) among patients can identify barriers and challenges in following recommended practices, providing valuable insights for dental healthcare providers, policymakers, and researchers. This study aimed to explore the KAP of patients with dental arch deficiencies regarding tooth loss and dentures. METHODS: This web-based, cross-sectional study was conducted among patients with dental arch deficiencies using a self-designed questionnaire. RESULT: 3166 valid questionnaires were included. Participants' mean KAP scores were 6.84 ± 2.27 (possible range: 0 ~ 12), 39.4 ± 3.72 (possible range: 9 ~ 45), and 27.7 ± 4.36 (possible range: 8 ~ 40), respectively. Multivariable logistic regression analysis showed that knowledge (OR = 1.383), employed (OR = 1.805), family history (OR = 2.158), and treatment (OR = 1.683) were independently associated with attitude. Moreover, knowledge (OR = 1.239), attitude (OR = 1.250), female (OR = 0.619), age (OR = 0.967), college/bachelor (OR = 0.373), and master and above degree (OR = 0.418), employed (OR = 0.554) or student (OR = 0.434), with 10,001-20,000 Yuan household income per month (OR = 0.492), have been married (OR = 0.609), smoking (OR = 0.595), drinking (OR = 0.397), disease duration (OR = 0.972), with family history (OR = 1.676), and with treatment (OR = 3.492) were independently associated with practice (all P < 0.05). CONCLUSION: Patients with dental arch deficiencies have insufficient knowledge, positive attitudes, and moderate practice toward tooth loss and dentures, which might be affected by multiple demographic factors.


Assuntos
Dentaduras , Conhecimentos, Atitudes e Prática em Saúde , Perda de Dente , Humanos , Feminino , Masculino , Estudos Transversais , Pessoa de Meia-Idade , Adulto , Inquéritos e Questionários , Dentaduras/estatística & dados numéricos , Arco Dental , Idoso , Adulto Jovem
12.
J Shoulder Elbow Surg ; 33(10): 2279-2289, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38852708

RESUMO

BACKGROUND: Gartland Type III supracondylar humerus fractures (SCHFs) are commonly treated using closed reduction followed by percutaneous pin fixation. However, conversion to open reduction may be necessary if closed reduction fails. This study aimed to identify risk factors associated with failed closed reduction and provide a theoretical basis for clinical decision-making in the treatment of Gartland Type III fractures. METHODS: A retrospective analysis was conducted on children with Gartland Type III SCHF who underwent surgical treatment between April 2017 and June 2018. Based on whether or not the closed reduction was successful, patients were split into the open reduction group and the closed reduction group. Within the closed reduction group, subgroup analysis based on surgery duration was carried out. Data were collected from medical records and X-ray images. Univariate and multivariate regression analyses were utilized to evaluate the relationship between variables and failed closed reduction. RESULTS: The study included 36 patients in the open reduction group and 135 patients in the closed reduction group. Multivariate analysis revealed that the presence of angle (P = .024, OR = 3.199), rotation (P = .000, OR = 6.359), skin creases (P = .013, OR = 4.077), anterior-posterior displacement ratio (P = .011, OR = 4.337), fracture angle in the anteroposterior view (P = .014, OR = 0.939), and fracture distal displacement direction (P = .002, OR = 5.384) were independent risk factors for failed closed reduction. Subgroup analysis showed that fracture distal displacement direction (P = .013), skin folds (P = .013), lateral displacement ratio (P = .016), and anterior-posterior displacement value (P = .005) significantly influenced the duration of closed reduction surgery. CONCLUSION: The presence of sharp angle or rotation at the fracture ends, skin folds on the anterior elbow, minor anterior-posterior displacement of the fracture, higher medial inclination of the fracture plane, and distal fracture displacement toward the radial side are independent risk factors for failed closed reduction in pediatric Gartland Type III SCHF.


Assuntos
Redução Fechada , Fraturas do Úmero , Falha de Tratamento , Humanos , Fraturas do Úmero/cirurgia , Fraturas do Úmero/diagnóstico por imagem , Estudos Retrospectivos , Feminino , Masculino , Criança , Fatores de Risco , Redução Fechada/métodos , Pré-Escolar , Redução Aberta/métodos
13.
J Inflamm Res ; 17: 3641-3652, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38855167

RESUMO

Background: Acacetin is a natural flavonoid known for its anti-tumor, antioxidant, and anti-inflammatory properties. Our previous studies have shown its protective effects against cerebral ischemia-reperfusion injury (IRI), but the underlying molecular mechanisms remain unclear. Purpose: The study delves into acacetin's mechanism in mitigating cerebral IRI, with a focus on transcriptomic insights. Methods: We established the oxygen-glucose deprivation/re-oxygenation (OGD/R) model in BV2 microglia, treating them with 10µM acacetin. Then we assessed cell proliferation using CCK-8 and measured Lactate Dehydrogenase (LDH) release. High-throughput RNA sequencing (RNA-seq) underpinned the analysis of differentially expressed genes (DEGs) and long non-coding RNAs (lncRNAs), functional enrichment, and alternative splicing events (ASEs), validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results: OGD/R injury significantly impaired cell proliferation and increased LDH release, effects mitigated by acacetin. RNA-seq identified 2148 upregulated and 2135 downregulated DEGs post-OGD/R. In contrast, the acacetin-treated group showed 248 upregulated and 240 downregulated DEGs compared to the OGD/R group. All DEGs were enriched in both Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Overlapping analysis indicated that acacetin treatment reversed the expression of 203 genes affected by OGD/R, including inflammation-related genes such as Isg15, Fcgr1, Il1b, and Parp12. Moreover, the oxidative stress-related gene, Mt2, was downregulated post-OGD/R but upregulated following acacetin treatment. We further found that OGD/R and acacetin treatment could modulate gene splicing events, impacting cell apoptosis or inflammatory responses, such as the A3SS splicing event in the Trim47 gene. RNA-seq also highlighted differential expression of numerous lncRNAs, particularly the upregulation of lncRNA Rmrp and Terc post-OGD/R and their subsequent downregulation post-acacetin treatment. These lncRNAs might regulate cell proliferation through mediating target gene expressions. RT-qPCR validation confirmed these findings. Conclusion: Significant upregulation of genes and ASEs linked to oxidative stress and inflammatory response is observed in cerebral IRI. Acacetin intervention reverses these effects, highlighting its mechanism in alleviating the injury by modulating gene expression and splicing events.

14.
Colloids Surf B Biointerfaces ; 241: 114006, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38870646

RESUMO

Bacterial infections pose a serious threat to human health, and the emergence of superbugs and the growing antibiotic resistance phenomenon have made the development of novel antimicrobial products. In this paper, an ultrasmall Cu, N co-doped carbon dots (CDs-Cu-N) with excellent peroxidase mimic activity and enhanced catalase mimic activity was successfully prepared and anchored to an injectable chitosan (CS)-based hybrid hydrogel. As expected, the CDs-Cu-N-H2O2-CS hybrid hydrogel maintains the excellent enzyme-mimicking properties of CDs-Cu-N and shows superior antibacterial property, which has been proven to effectively promote the healing of S. aureus-infected wounds with good biocompatibility. Benefitting from the dual-enzyme-mimic activity of CDs-Cu-N, the hybrid hydrogel not only can catalyze the generation of highly toxic ROS from low concentration of H2O2 to inhibit the bacterial infections, but also can significantly promote the wound tissue repair and regeneration by improving the anoxic microenvironment and promoting neovascularization. In addition, this hybrid hydrogel also possessed excellent injectability and moldability. It can adapt to various the irregular shapes of acute wounds, maintaining a moist and safe microenvironment while prolonging the action time of nanozyme on wounds, thus promoting wound healing. This injectable hybrid hydrogel shows great potential applications in the field of wound infection management.


Assuntos
Antibacterianos , Carbono , Quitosana , Hidrogéis , Staphylococcus aureus , Cicatrização , Quitosana/química , Quitosana/farmacologia , Carbono/química , Carbono/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Animais , Cicatrização/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Camundongos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Pontos Quânticos/química , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Humanos , Injeções , Tamanho da Partícula , Cobre/química , Cobre/farmacologia
15.
Exploration (Beijing) ; 4(3): 20230086, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38939869

RESUMO

The ongoing mutations of the SARS-CoV-2 pose serious challenges to the efficacy of the available antiviral drugs, and new drugs with fantastic efficacy are always deserved investigation. Here, a nanobody called IBT-CoV144 is reported, which exhibits broad neutralizing activity against SARS-CoV-2 by inducing the conformation of spike trimer dimers. IBT-CoV144 was isolated from an immunized alpaca using the RBD of wild-type SARS-CoV-2, and it showed strong cross-reactive binding and neutralizing potency against diverse SARS-CoV-2 variants, including Omicron subvariants. Moreover, the prophylactically and therapeutically intranasal administration of IBT-CoV144 confers fantastic protective efficacy against the challenge of Omicron BA.1 variant in BALB/c mice model. The structure analysis of the complex between spike (S) protein, conducted using Cryo-EM, revealed a special conformation known as the trimer dimers. This conformation is formed by two trimers, with six RBDs in the "up" state and bound by six VHHs. IBT-CoV144 binds to the lateral region of the RBD on the S protein, facilitating the aggregation of S proteins. This aggregation results in steric hindrance, which disrupts the recognition of the virus by ACE2 on host cells. The discovery of IBT-CoV144 will provide valuable insights for the development of advanced therapeutics and the design of next-generation vaccines.

16.
J Adv Res ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909885

RESUMO

INTRODUCTION: Acute kidney injury (AKI) is associated with high morbidity and mortality rates. The molecular mechanisms underlying AKI are currently being extensively investigated. WWP2 is an E3 ligase that regulates cell proliferation and differentiation. Whether WWP2 plays a regulatory role in AKI remains to be elucidated. OBJECTIVES: We aimed to investigate the implication of WWP2 in AKI and its underlying mechanism in the present study. METHODS: We utilized renal tissues from patients with AKI and established AKI models in global or tubule-specific knockout (cKO) mice strains to study WWP2's implication in AKI. We also systemically analyzed ubiquitylation omics and proteomics to decipher the underlying mechanism. RESULTS: In the present study, we found that WWP2 expression significantly increased in the tubules of kidneys with AKI. Global or tubule-specific knockout of WWP2 significantly aggravated renal dysfunction and tubular injury in AKI kidneys, whereas WWP2 overexpression significantly protected tubular epithelial cells against cisplatin. WWP2 deficiency profoundly affected autophagy in AKI kidneys. Further analysis with ubiquitylation omics, quantitative proteomics and experimental validation suggested that WWP2 mediated poly-ubiquitylation of CDC20, a negative regulator of autophagy. CDC20 was significantly decreased in AKI kidneys, and selective inhibiting CDC20 with apcin profoundly alleviated renal dysfunction and tubular injury in the cisplatin model with or without WWP2 cKO, indicating that CDC20 may serve as a downstream target of WWP2 in AKI. Inhibiting autophagy with 3-methyladenine blocked apcin's protection against cisplatin-induced renal tubular cell injury. Activating autophagy by rapamycin significantly protected against cisplatin-induced AKI in WWP2 cKO mice, whereas inhibiting autophagy by 3-methyladenine further aggravated apoptosis in cisplatin-exposed WWP2 KO cells. CONCLUSION: Taken together, our data indicated that the WWP2/CDC20/autophagy may be an essential intrinsic protective mechanism against AKI. Further activating WWP2 or inhibiting CDC20 may be novel therapeutic strategies for AKI.

17.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 658-662, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-38926950

RESUMO

OBJECTIVE: To investigate the effect of TLK2 expression regulated by miR-21 on proliferation and apoptosis of acute myeloid leukemia cells. METHODS: Seventy patients with AML admitted to our hospital from January 2019 to July 2022 were selected, while 30 patients with iron deficiency anemia were selected as the control group. Bone marrow mononuclear cells (BMMNCs) of the patients were obtained using Ficoll density gradient centrifugation. RT-qPCR was used to determine the expression levels of miR-21 and TLK2 mRNA in BMMNCs. Mimics-miR-21, mimics-NC, inhibitor-miR-21, inhibitor-NC and NC were transfected into HL-60 cells using liposome-mediated transfection technology. CCK-8 method was used to determine the activity of transfected HL-60 cells after treatment with cytarabine. The apoptosis rate of HL-60 transfected cells was determined by TUNEL method. The expression of TLK2 mRNA in HL-60 cells transfected with inhibitor-miR-21 was determined by RT-qPCR. RESULTS: The relative expression levels of miR-21 and TLK2 mRNA in BMMNCs of AML patients were significantly higher than those of controls (both P < 0.05). After HL-60 cells were treated with cytarabine, both the cell activity of inhibitor-miR-21 group and mimics-miR-21 group decreased significantly with the increase of cytarabine concentration (both P < 0.05). However, at each concentration point of cytarabine, the cell activity of inhibitor-miR-21 group was lower than that of control group (P < 0.05), while mimics-miR-21 group was higher than control group (P < 0.05). After HL-60 cells were treated with cytarabine, the apoptosis rate of inhibitor-miR-21 group was significantly increased (P < 0.05), while that of mimics-miR-21 group was significantly decreased (P < 0.05). After HL-60 cells were treated with inhibitor-miR-21, the relative expression of TLK2 mRNA decreased significantly (P < 0.05). CONCLUSION: miR-21 is highly expressed in AML patients, which may promote the apoptosis of AML cells by inhibiting the expression of TLK2.


Assuntos
Apoptose , Proliferação de Células , Leucemia Mieloide Aguda , MicroRNAs , Humanos , Citarabina/farmacologia , Células HL-60 , Leucemia Mieloide Aguda/genética , MicroRNAs/genética , Transfecção
18.
Vaccines (Basel) ; 12(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38793729

RESUMO

Despite significant strides in vaccine research and the availability of vaccines for many infectious diseases, the threat posed by both known and emerging infectious diseases persists. Moreover, breakthrough infections following vaccination remain a concern. Therefore, the development of novel vaccines is imperative. These vaccines must exhibit robust protective efficacy, broad-spectrum coverage, and long-lasting immunity. One promising avenue in vaccine development lies in leveraging T-cells, which play a crucial role in adaptive immunity and regulate immune responses during viral infections. T-cell recognition can target highly variable or conserved viral proteins, and memory T-cells offer the potential for durable immunity. Consequently, T-cell-based vaccines hold promise for advancing vaccine development efforts. This review delves into the latest research advancements in T-cell-based vaccines across various platforms and discusses the associated challenges.

19.
Front Microbiol ; 15: 1390815, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746748

RESUMO

With the high intensification of poultry breeding, a series of diseases caused by pathogenic bacteria threaten the health of poultry and human. Among them, poultry diseases induced by Escherichia coli cause significant economic loss every year. The aim of this study was to investigate the effects of dietary supplementation with Artemisia annua L. polysaccharide (AAP) on the growth performance and intestinal barrier function of broilers with Escherichia coli (E. coli) challenge. A total of 256 one-day-old chicks were randomly assigned to four treatment groups: control group (fed basal diet), AAP group (fed basal diet supplemented with AAP), E. coli group (fed basal diet and orally administered E. coli), AAP + E. coli group (fed basal diet supplemented with AAP and orally administered E. coli). Dietary AAP supplementation elevated the BW, ADG and ADFI in non-challenged broilers. AAP also increased the apparent metabolic rate of EE and Ca in E. coli-challenged broilers. Moreover, AAP not only enhanced the serum IgA content but also decreased the serum and jejunum content of IL-6, as well as the jejunum level of IL-1ß in non-challenged broilers. AAP also down-regulates the mRNA level of inflammatory factors (IL-1ß, IL-6, and TNF-α) by inhibiting the mRNA expression of TLR4 and MyD88 in intestinal NF-κB signaling pathway of E. coli-challenged broilers. Meanwhile, AAP up-regulates the activity and mRNA level CAT by down-regulating the mRNA level of Keap1 in intestinal Nrf2 signaling pathway of E. coli-challenged broilers, and decreased serum MDA concentration. AAP significantly elevated the mRNA level of CAT, SOD and Nrf2 in jejunal of non-challenged broilers. Interestingly, AAP can improve intestinal physical barrier by down-regulating serum ET content, increasing the jejunal villus height/crypt depth (VH/CD) and ZO-1 mRNA level in broilers challenged by E. coli. AAP also elevated the VH/CD and the mRNA level of Occludin, ZO-1, Mucin-2 in non-challenged broilers. Importantly, AAP reshaped the balance of jejunum microbiota in E. coli-challenged broilers by altering α diversity and community composition. In summary, AAP ameliorated the loss of growth performance in broilers challenged with E. coli, probably by regulating the intestinal permeability and mucosa morphology, immune function, antioxidant ability, and microbiota.

20.
Front Psychol ; 15: 1361878, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694438

RESUMO

This paper explored the training methods to improve the level of deaf college students' ToM. Eighty deaf college students were selected as participants and randomly divided into experimental group and control group. The ToM training group received ToM training; The non-ToM training group received physical-conversation training. Cognitive ToM task and affective ToM task were used to investigate the training effect. After training, the level of ToM of deaf college students who received ToM training was significantly improved. The results show that ToM training can effectively promote the level of deaf college students' ToM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA