Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(19)2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39408513

RESUMO

Multi-ion-imprinted polymers (MIIPs) are materials with a wide range of applications mainly focused on environmental recovery, mining, technology, sensors, etc. MIIPs can incorporate ions such as heavy metals, transition metals, rare earth elements, radionuclides, and other types of ions. The chemical structures of MIIPs can be designed for different purposes and with certain morphologies, such as gels, crystals, or powders, and the surface area and porosity are also considered. All these properties provide the material with several desirable characteristics, like high selectivity, high specificity, adequate efficiency, good stability, the possibility of reusability, and strategy technology adaptation. In this review, we show the multitude of challenges of multi-ion imprinted polymer chemical synthesis based on the different and interesting methods reported previously.

2.
Polymers (Basel) ; 15(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36904427

RESUMO

The novel [Cuphen(VBA)2H2O] complex (phen: phenanthroline, VBA: vinylbenzoate) was prepared and used as a functional monomer to preorganize a new ion-imprinted polymer (IIP). By leaching the Cu(II) from the molecular imprinted polymer (MIP), [Cuphen(VBA)2H2O-co-EGDMA]n (EGDMA: ethylene glycol dimethacrylate), the IIP was obtained. A non-ion-imprinted polymer (NIIP) was also prepared. The crystal structure of the complex and some physicochemical, spectrophotometric techniques were also used for the MIP, IIP, and NIIP characterization. The results showed that the materials are nonsoluble in water and polar solvents, which are the main features of polymers. The surface area of the IIP is higher than the NIIP demonstrated by the blue methylene method. The SEM images show monoliths and particles smoothly packed together on spherical and prismatic-spherical surfaces in the morphology of MIP and IIP, respectively. Moreover, the MIP and IIP could be considered as mesoporous and microporous materials, shown by the size of the pores determined by the BET and BJH methods. Furthermore, the adsorption performance of the IIP was studied using copper(II) as a contaminant heavy metal. The maximum adsorption capacity of IIP was 287.45 mg/g at 1600 mg/L Cu2+ ions with 0.1 g of IIP at room temperature. The Freundlich model was found to best describe the equilibrium isotherm of the adsorption process. The competitive results indicate that the stability of the Cu-IIP complex is higher than the Ni-IIP complex with a selectivity coefficient of 1.61.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA