Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 9(3): 1049-1064, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38482790

RESUMO

The development of efficient nanoscale photon absorbers, such as plasmonic or high-index dielectric nanostructures, allows the remotely controlled release of heat on the nanoscale using light. These photothermal nanomaterials have found applications in various research and technological fields, ranging from materials science to biology. However, measuring the nanoscale thermal fields remains an open challenge, hindering full comprehension and control of nanoscale photothermal phenomena. Here, we review and discuss existent thermometries suitable for single nanoparticles heated under illumination. These methods are classified in four categories according to the region where they assess temperature: (1) the average temperature within a diffraction-limited volume, (2) the average temperature at the immediate vicinity of the nanoparticle surface, (3) the temperature of the nanoparticle itself, and (4) a map of the temperature around the nanoparticle with nanoscale spatial resolution. In the latter, because it is the most challenging and informative type of method, we also envisage new combinations of technologies that could be helpful in retrieving nanoscale temperature maps. Finally, we analyze and provide examples of strategies to validate the results obtained using different thermometry methods.


Assuntos
Nanopartículas , Nanoestruturas , Temperatura Alta , Nanopartículas/química , Nanoestruturas/química , Temperatura
2.
Small Methods ; 7(7): e2201565, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37132097

RESUMO

Fluorescence Resonance Energy Transfer (FRET)-based approaches are unique tools for sensing the immediate surroundings and interactions of (bio)molecules. FRET imaging and Fluorescence Lifetime Imaging Microscopy (FLIM) enable the visualization of the spatial distribution of molecular interactions and functional states. However, conventional FLIM and FRET imaging provide average information over an ensemble of molecules within a diffraction-limited volume, which limits the spatial information, accuracy, and dynamic range of the observed signals. Here, an approach to obtain super-resolved FRET imaging based on single-molecule localization microscopy using an early prototype of a commercial time-resolved confocal microscope is demonstrated. DNA Points Accumulation for Imaging in Nanoscale Topography with fluorogenic probes provides a suitable combination of background reduction and binding kinetics compatible with the scanning speed of usual confocal microscopes. A single laser is used to excite the donor, a broad detection band is employed to retrieve both donor and acceptor emission, and FRET events are detected from lifetime information.


Assuntos
DNA , Transferência Ressonante de Energia de Fluorescência , Transferência Ressonante de Energia de Fluorescência/métodos , Microscopia de Fluorescência/métodos , DNA/química , Microscopia Confocal , Imagem Individual de Molécula
3.
J Chem Phys ; 156(3): 034201, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35065575

RESUMO

While colloidal chemistry provides ways to obtain a great variety of nanoparticles with different shapes, sizes, material compositions, and surface functions, their controlled deposition and combination on arbitrary positions of substrates remain a considerable challenge. Over the last ten years, optical printing arose as a versatile method to achieve this purpose for different kinds of nanoparticles. In this article, we review the state of the art of optical printing of single nanoparticles and discuss its strengths, limitations, and future perspectives by focusing on four main challenges: printing accuracy, resolution, selectivity, and nanoparticle photostability.

4.
Nanoscale ; 13(44): 18421-18433, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34739534

RESUMO

Super-resolution fluorescence microscopy and Förster Resonance Energy Transfer (FRET) form a well-established family of techniques that has provided unique tools to study the dynamic architecture and functionality of biological systems, as well as to investigate nanomaterials. In the last years, the integration of super-resolution methods with FRET measurements has generated advances in two fronts. On the one hand, FRET-based probes have enhanced super-resolution imaging. On the other, the development of super-resolved FRET imaging methods has allowed the visualization of molecular interaction patterns with higher spatial resolution, less averaging and higher dynamic range. Here, we review these advances and discuss future perspectives, including the possible integration of FRET with next generation super-resolution techniques capable of reaching true molecular-scale spatial resolution.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA