Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 514, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31949184

RESUMO

Chronic Obstructive Pulmonary Disease (COPD) and Idiopathic Pulmonary Fibrosis (IPF) have contrasting clinical and pathological characteristics and interesting whole-genome transcriptomic profiles. However, data from public repositories are difficult to reprocess and reanalyze. Here, we present PulmonDB, a web-based database (http://pulmondb.liigh.unam.mx/) and R library that facilitates exploration of gene expression profiles for these diseases by integrating transcriptomic data and curated annotation from different sources. We demonstrated the value of this resource by presenting the expression of already well-known genes of COPD and IPF across multiple experiments and the results of two differential expression analyses in which we successfully identified differences and similarities. With this first version of PulmonDB, we create a new hypothesis and compare the two diseases from a transcriptomics perspective.


Assuntos
Bases de Dados Genéticas , Redes Reguladoras de Genes , Fibrose Pulmonar Idiopática/genética , Doença Pulmonar Obstrutiva Crônica/genética , Curadoria de Dados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Internet , Sequenciamento do Exoma
2.
Mol Phylogenet Evol ; 79: 1-11, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24952318

RESUMO

Bean plants from the Phaseolus genus are widely consumed and represent a nitrogen source for human nutrition. They provide biological fertilization by establishing root nodule symbiosis with nitrogen-fixing bacteria. To establish a successful interaction, bean plants and their symbiotic bacteria need to synchronize a proper molecular crosstalk. Within the Phaseolus genus, P. vulgaris has been the prominent species to study nodulation with Rhizobium symbionts. However the Phaseolus genus comprises diverse species whose symbionts have not been analyzed. Here we identified and studied nodule bacteria from representative Phaseolus species not previously analyzed and from all the described wild species related to P. vulgaris. We found Bradyrhizobium in nodules from most species representing all Phaseolus clades except in five phylogenetically related species from the P. vulgaris clade. Therefore we propose that Bradyrhizobium nodulation is common in Phaseolus and that there was a symbiont preference shift to Rhizobium nodulation in few related species. This work sets the basis to further study the genetic basis of this symbiont substitution.


Assuntos
Bradyrhizobium/genética , Phaseolus/microbiologia , Rhizobium/genética , Simbiose , Bradyrhizobium/isolamento & purificação , Bradyrhizobium/fisiologia , DNA Espaçador Ribossômico/genética , Genes Bacterianos , México , Phaseolus/classificação , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/isolamento & purificação , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA