RESUMO
This study aims to provide a comprehensive understanding of the key factors influencing the rheological behavior and the mechanisms of natural polyelectrolyte complexes (PECs) as flocculation agents for cellulose microfibers (CMFs) and nanofibers (CNFs). PECs were formed by combining two polyelectrolytes: xylan (Xyl) and chitosan (Ch), at different Xyl/Ch mass ratios: 60/40, 70/30, and 80/20. First, Xyl, Ch, and PEC solutions were characterized by measuring viscosity, critical concentration (c*), rheological parameter, ζ-potential, and hydrodynamic size. Then, the flocculation mechanisms of CMF and CNF suspensions with PECs under dynamic conditions were studied by measuring viscosity, while the flocculation under static conditions was examined through gel point measurements, floc average size determination, and ζ-potential analysis. The findings reveal that PEC solutions formed with a lower xylan mass ratio showed higher intrinsic viscosity, higher hydrodynamic size, higher z-potential, and a lower c*. This is due to the high molecular weight, charge, and gel-forming ability. All the analyzed solutions behave as a typical non-Newtonian shear-thinning fluid. The flocculation mechanisms under dynamic conditions showed that a very low dosage of PEC (between 2 and 6 mg PEC/g of fiber) was sufficient to produce flocculation. Under dynamic conditions, an increase in viscosity indicates flocculation at this low PEC dosage. Finally, under static conditions, maximum floc sizes were observed at the same PEC dosage where minimum gel points were reached. Higher PEC doses were required for CNF suspensions than for CMF suspensions.
RESUMO
The present work analyzes the effect of process variables and the method of characterization of cellulose micro/nanofibers (CMNFs) obtained by different treatments. A chemical pre-treatment was performed using oxalic acid at 25 wt.% and 50 wt.%. Moreover, for mechanical pre-treatments, a rotary homogenizer or a PFI mill refiner were considered. For the mechanical fibrillation to obtain CMNFs, 5 and 15 passes through a pressurized homogenization were considered. The best results of nanofibrillation yield (76.5%), transmittance (72.1%) and surface charges (71.0 µeq/g CMNF) were obtained using the PFI mill refiner, 50 wt.% oxalic acid and 15 passes. Nevertheless, the highest aspect ratio (length/diameter) determined by Transmission Electron Microscopy (TEM) was found using the PFI mill refiner and 25 wt.% oxalic acid treatment. The aspect ratio was related to the gel point and intrinsic viscosity of CMNF suspensions. The values estimated for gel point agree with those determined by TEM. Moreover, a strong relationship between the intrinsic viscosity [η] of the CMNF dispersions and the corresponding aspect ratio (p) was found (ρ[η] = 0.014 p2.3, R2 = 0.99). Finally, the tensile strength of films obtained from CMNF suspensions was more influenced by the nanofibrillation yield than their aspect ratio.
RESUMO
The removal of native acetyl groups from hardwood O-acetyl-glucuronoxylan has a strong effect on physical characteristics, accessibility and structure of this polymer. The removal also has effects on the swelling and ion transport capacity of the cell wall of hardwoods. In this work, a kinetic expression for Eucalyptus wood deacetylation is determined. Two liquid mediums are considered: a simple alkaline one and another with a higher sodium concentration. The kinetic expression is a power law for the acetyl content and the concentrations in the liquid medium dependence, and is an Arrhenius type expression for temperature dependence. The kinetic expression can be useful to predict the physical properties of wood since the analysis of deacetylation effects on effective capillarity (ECCSA) shows that the acetyl content is a determining factor of wood ionic transport capacity.