Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1868(7): 119015, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33741433

RESUMO

An essential requirement for cells to sustain a high proliferating rate is to be paired with enhanced protein synthesis through the production of ribosomes. For this reason, part of the growth-factor signaling pathways, are devoted to activate ribosome biogenesis. Enhanced production of ribosomes is a hallmark in cancer cells, which is boosted by different mechanisms. Here we report that the nucleolar tumor-protein MageB2, whose expression is associated with cell proliferation, also participates in ribosome biogenesis. Studies carried out in both siRNA-mediated MageB2 silenced cells and CRISPR/CAS9-mediated MageB2 knockout (KO) cells showed that its expression is linked to rRNA transcription increase independently of the cell proliferation status. Mechanistically, MageB2 interacts with phospho-UBF, a protein which causes the recruitment of RNA Pol I pre-initiation complex required for rRNA transcription. In addition, cells expressing MageB2 displays enhanced phospho-UBF occupancy at the rDNA gene promoter. Proteomic studies performed in MageB2 KO cells revealed impairment in ribosomal protein (RPs) content. Functionally, enhancement in rRNA production in MageB2 expressing cells, was directly associated with an increased dynamic in protein synthesis. Altogether our results unveil a novel function for a tumor-expressed protein from the MAGE-I family. Findings reported here suggest that nucleolar MageB2 might play a role in enhancing ribosome biogenesis as part of its repertoire to support cancer cell proliferation.


Assuntos
Antígenos de Neoplasias/metabolismo , Proteínas de Neoplasias/metabolismo , Ribossomos/metabolismo , Antígenos de Neoplasias/fisiologia , Linhagem Celular Tumoral , Nucléolo Celular/metabolismo , Proliferação de Células/genética , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Células HCT116 , Células HEK293 , Humanos , Proteínas de Neoplasias/fisiologia , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/metabolismo , Regiões Promotoras Genéticas/genética , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Proteômica , RNA Polimerase I/metabolismo , RNA Ribossômico/biossíntese , Ribossomos/genética , Transcrição Gênica/genética
2.
Gene ; 499(2): 262-5, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22441121

RESUMO

Tay-Sachs disease (TSD) is a recessively inherited disorder caused by the deficient activity of hexosaminidase A due to mutations in the HEXA gene. Up to date there is no information regarding the molecular genetics of TSD in Argentinean patients. In the present study we have studied 17 Argentinean families affected by TSD, including 20 patients with the acute infantile form and 3 with the sub-acute form. Overall, we identified 14 different mutations accounting for 100% of the studied alleles. Eight mutations were novel: 5 were single base changes leading to drastic residue changes or truncated proteins, 2 were small deletions and one was an intronic mutation that may cause a splicing defect. Although the spectrum of mutations was highly heterogeneous, a high frequency of the c.459+5G>A mutation, previously described in different populations was found among the studied cohort. Haplotype analysis suggested that in these families the c.459+5G>A mutation might have arisen by a single mutational event.


Assuntos
Hexosaminidase A/genética , Mutação , Doença de Tay-Sachs/genética , Criança , Estudos de Coortes , Feminino , Humanos , Lactente , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA