Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Ann Intensive Care ; 14(1): 129, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167241

RESUMO

BACKGROUND: This study aimed to develop prognostic models for predicting the need for invasive mechanical ventilation (IMV) in intensive care unit (ICU) patients with COVID-19 and compare their performance with the Respiratory rate-OXygenation (ROX) index. METHODS: A retrospective cohort study was conducted using data collected between March 2020 and August 2021 at three hospitals in Rio de Janeiro, Brazil. ICU patients aged 18 years and older with a diagnosis of COVID-19 were screened. The exclusion criteria were patients who received IMV within the first 24 h of ICU admission, pregnancy, clinical decision for minimal end-of-life care and missing primary outcome data. Clinical and laboratory variables were collected. Multiple logistic regression analysis was performed to select predictor variables. Models were based on the lowest Akaike Information Criteria (AIC) and lowest AIC with significant p values. Assessment of predictive performance was done for discrimination and calibration. Areas under the curves (AUC)s were compared using DeLong's algorithm. Models were validated externally using an international database. RESULTS: Of 656 patients screened, 346 patients were included; 155 required IMV (44.8%), 191 did not (55.2%), and 207 patients were male (59.8%). According to the lowest AIC, arterial hypertension, diabetes mellitus, obesity, Sequential Organ Failure Assessment (SOFA) score, heart rate, respiratory rate, peripheral oxygen saturation (SpO2), temperature, respiratory effort signals, and leukocytes were identified as predictors of IMV at hospital admission. According to AIC with significant p values, SOFA score, SpO2, and respiratory effort signals were the best predictors of IMV; odds ratios (95% confidence interval): 1.46 (1.07-2.05), 0.81 (0.72-0.90), 9.13 (3.29-28.67), respectively. The ROX index at admission was lower in the IMV group than in the non-IMV group (7.3 [5.2-9.8] versus 9.6 [6.8-12.9], p < 0.001, respectively). In the external validation population, the area under the curve (AUC) of the ROX index was 0.683 (accuracy 63%), the AIC model showed an AUC of 0.703 (accuracy 69%), and the lowest AIC model with significant p values had an AUC of 0.725 (accuracy 79%). CONCLUSIONS: In the development population of ICU patients with COVID-19, SOFA score, SpO2, and respiratory effort signals predicted the need for IMV better than the ROX index. In the external validation population, although the AUCs did not differ significantly, the accuracy was higher when using SOFA score, SpO2, and respiratory effort signals compared to the ROX index. This suggests that these variables may be more useful in predicting the need for IMV in ICU patients with COVID-19. GOV IDENTIFIER: NCT05663528.

3.
Phys Life Rev ; 48: 176-197, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320380

RESUMO

It is more than recognized and accepted that the environment affects the physiological responses of all living things, from bacteria to superior vertebrates, constituting an important factor in the evolution of all species. Environmental influences range from natural processes such as sunlight, seasons of the year, and rest to complex processes like stress and other mood disorders, infections, and air pollution, being all of them influenced by how each creature deals with them. In this chapter, it will be discussed how some of the environmental elements affect directly or indirectly neuropathic pain, a type of chronic pain caused by a lesion or disease of the somatosensory nervous system. For that, it was considered the edge of knowledge in translational research, thus including data from human and experimental animals as well as the applicability of such findings.


Assuntos
Poluição do Ar , Dor Crônica , Neuralgia , Humanos , Animais , Dor Crônica/complicações , Neuralgia/etiologia , Estações do Ano
4.
Phys Life Rev, v. 48, p. 176-197, mar. 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5270

RESUMO

It is more than recognized and accepted that the environment affects the physiological responses of all living things, from bacteria to superior vertebrates, constituting an important factor in the evolution of all species. Environmental influences range from natural processes such as sunlight, seasons of the year, and rest to complex processes like stress and other mood disorders, infections, and air pollution, being all of them influenced by how each creature deals with them. In this chapter, it will be discussed how some of the environmental elements affect directly or indirectly neuropathic pain, a type of chronic pain caused by a lesion or disease of the somatosensory nervous system. For that, it was considered the edge of knowledge in translational research, thus including data from human and experimental animals as well as the applicability of such findings.

5.
Eur Heart J ; 44(44): 4696-4712, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37944136

RESUMO

BACKGROUND AND AIMS: Developing novel therapies to battle the global public health burden of heart failure remains challenging. This study investigates the underlying mechanisms and potential treatment for 4-hydroxynonenal (4-HNE) deleterious effects in heart failure. METHODS: Biochemical, functional, and histochemical measurements were applied to identify 4-HNE adducts in rat and human failing hearts. In vitro studies were performed to validate 4-HNE targets. RESULTS: 4-HNE, a reactive aldehyde by-product of mitochondrial dysfunction in heart failure, covalently inhibits Dicer, an RNase III endonuclease essential for microRNA (miRNA) biogenesis. 4-HNE inhibition of Dicer impairs miRNA processing. Mechanistically, 4-HNE binds to recombinant human Dicer through an intermolecular interaction that disrupts both activity and stability of Dicer in a concentration- and time-dependent manner. Dithiothreitol neutralization of 4-HNE or replacing 4-HNE-targeted residues in Dicer prevents 4-HNE inhibition of Dicer in vitro. Interestingly, end-stage human failing hearts from three different heart failure aetiologies display defective 4-HNE clearance, decreased Dicer activity, and miRNA biogenesis impairment. Notably, boosting 4-HNE clearance through pharmacological re-activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) using Alda-1 or its improved orally bioavailable derivative AD-9308 restores Dicer activity. ALDH2 is a major enzyme responsible for 4-HNE removal. Importantly, this response is accompanied by improved miRNA maturation and cardiac function/remodelling in a pre-clinical model of heart failure. CONCLUSIONS: 4-HNE inhibition of Dicer directly impairs miRNA biogenesis in heart failure. Strikingly, decreasing cardiac 4-HNE levels through pharmacological ALDH2 activation is sufficient to re-establish Dicer activity and miRNA biogenesis; thereby representing potential treatment for patients with heart failure.


Assuntos
Insuficiência Cardíaca , MicroRNAs , Humanos , Ratos , Animais , MicroRNAs/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Aldeídos/metabolismo , Aldeídos/farmacologia , Processamento de Proteína Pós-Traducional , Aldeído-Desidrogenase Mitocondrial/genética
6.
Eur J Pharmacol ; 959: 176058, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37739305

RESUMO

The aberrant activation of Wnt/ß-catenin and atypical Wnt/Ryk signaling pathways in the spinal cord is critical for the development and maintenance of neuropathic pain. Crotalphine is a structural analog to a peptide first identified in Crotalus durissus terrificus snake venom, which induces antinociception by activating kappa-opioid and CB2 cannabinoid receptors. Consistent with previous data, we showed that the protein levels of the canonical Wnt/ß-catenin and the atypical Wnt/Ryk signaling pathways are increased in neuropathic rats. Importantly, the administration of crotalphine downregulates these protein levels, including its downstream cascades, such as TCF4 from the canonical pathway and NR2B glutamatergic receptor and Ca2+-dependent signals, via the Ryk receptor. The CB2 receptor antagonist, AM630, abolished the crotalphine-induced atypical Wnt/Ryk signaling pathway activation. However, the selective CB2 agonist affects both canonical and non-canonical Wnt signaling in the spinal cord. Next, we showed that crotalphine blocked hypersensitivity and significantly decreased the concentration of IL-1ɑ, IL-1ß, IL-6, IL-10, IL-18, TNF-ɑ, MIP-1ɑ and MIP-2 induced by intrathecal injection of exogenous Wnt-3a agonist. Taken together, our findings show that crotalphine induces analgesia in a neuropathic pain model by down-regulating the canonical Wnt/ß-catenin and the atypical Wnt/Ryk signaling pathways and, consequently controlling neuroinflammation. This effect is, at least in part, mediated by CB2 receptor activation. These results open a perspective for new approaches that can be used to target Wnt signaling in the context of chronic pain. PERSPECTIVE: Our work identified that crotalphine-induced activation of CB2 receptors plays a critical role in the impairment of Wnt signaling during neuropathic pain. This work suggests that drugs with opioid/cannabinoid activity may be a useful strategy to target Wnt signaling in the context of chronic pain.


Assuntos
Analgesia , Dor Crônica , Neuralgia , Ratos , Animais , beta Catenina/metabolismo , Via de Sinalização Wnt , Analgésicos Opioides , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Peptídeos/farmacologia
8.
J Pharmacol Exp Ther, v.387, n. 1, 15-17, out. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5153
9.
Eur Heart J, ehad662, nov. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5137

RESUMO

Background and Aims Developing novel therapies to battle the global public health burden of heart failure remains challenging. This study investigates the underlying mechanisms and potential treatment for 4-hydroxynonenal (4-HNE) deleterious effects in heart failure. Methods Biochemical, functional, and histochemical measurements were applied to identify 4-HNE adducts in rat and human failing hearts. In vitro studies were performed to validate 4-HNE targets. Results 4-HNE, a reactive aldehyde by-product of mitochondrial dysfunction in heart failure, covalently inhibits Dicer, an RNase III endonuclease essential for microRNA (miRNA) biogenesis. 4-HNE inhibition of Dicer impairs miRNA processing. Mechanistically, 4-HNE binds to recombinant human Dicer through an intermolecular interaction that disrupts both activity and stability of Dicer in a concentration- and time-dependent manner. Dithiothreitol neutralization of 4-HNE or replacing 4-HNE-targeted residues in Dicer prevents 4-HNE inhibition of Dicer in vitro. Interestingly, end-stage human failing hearts from three different heart failure aetiologies display defective 4-HNE clearance, decreased Dicer activity, and miRNA biogenesis impairment. Notably, boosting 4-HNE clearance through pharmacological re-activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) using Alda-1 or its improved orally bioavailable derivative AD-9308 restores Dicer activity. ALDH2 is a major enzyme responsible for 4-HNE removal. Importantly, this response is accompanied by improved miRNA maturation and cardiac function/remodelling in a pre-clinical model of heart failure. Conclusions 4-HNE inhibition of Dicer directly impairs miRNA biogenesis in heart failure. Strikingly, decreasing cardiac 4-HNE levels through pharmacological ALDH2 activation is sufficient to re-establish Dicer activity and miRNA biogenesis; thereby representing potential treatment for patients with heart failure.

10.
Eur J Pharmacol, v. 959, p. 176058, set. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5099

RESUMO

The aberrant activation of Wnt/β-catenin and atypical Wnt/Ryk signaling pathways in the spinal cord is critical for the development and maintenance of neuropathic pain. Crotalphine is a structural analog to a peptide first identified in Crotalus durissus terrificus snake venom, which induces antinociception by activating kappa-opioid and CB2 cannabinoid receptors. Consistent with previous data, we showed that the protein levels of the canonical Wnt/β-catenin and the atypical Wnt/Ryk signaling pathways are increased in neuropathic rats. Importantly, the administration of crotalphine downregulates these protein levels, including its downstream cascades, such as TCF4 from the canonical pathway and NR2B glutamatergic receptor and Ca2+-dependent signals, via the Ryk receptor. The CB2 receptor antagonist, AM630, abolished the crotalphine-induced atypical Wnt/Ryk signaling pathway activation. However, the selective CB2 agonist affects both canonical and non-canonical Wnt signaling in the spinal cord. Next, we showed that crotalphine blocked hypersensitivity and significantly decreased the concentration of IL-1ɑ, IL-1β, IL-6, IL-10, IL-18, TNF-ɑ, MIP-1ɑ and MIP-2 induced by intrathecal injection of exogenous Wnt-3a agonist. Taken together, our findings show that crotalphine induces analgesia in a neuropathic pain model by down-regulating the canonical Wnt/β-catenin and the atypical Wnt/Ryk signaling pathways and, consequently controlling neuroinflammation. This effect is, at least in part, mediated by CB2 receptor activation. These results open a perspective for new approaches that can be used to target Wnt signaling in the context of chronic pain.

11.
J Pharmacol Exp Ther, v. 387, n. 1, out. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5088
12.
Front Pharmacol, v. 14, 1176805, mar. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4850
13.
Toxicon, v. 222, 106986, jan. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4750

RESUMO

Crotoxin (CTX) is a neurotoxin that is isolated from the venom of Crotalus durissus terrificus, which displays immunomodulatory, anti-inflammatory, and anti-tumoral effects. Previous research has demonstrated that CTX promotes the adherence of leukocytes to the endothelial cells in blood microcirculation and the high endothelial venules of lymph nodes, which reduces the number of blood cells and lymphocytes. Studies have also shown that these effects are mediated by lipoxygenase-derived mediators. However, the exact lipoxygenase-derived eicosanoid involved in the CTX effect on lymphocytes is yet to be characterized. As CTX stimulates lipoxin-derived mediators from macrophages and lymphocyte effector functions could be modulated by activating formyl peptide receptors, we aimed to investigate whether these receptors were involved in CTX-induced redistribution and functions of lymphocytes in rats. We used male Wistar rats treated with CTX to demonstrate that Boc2 (butoxycarbonyl-Phe-Leu-Phe-Leu-Phe), an antagonist of formyl peptide receptors, prevented CTX-induced decrease in the number of circulating lymphocytes and increased the expression of the lymphocyte adhesion molecule LFA1. CTX reduced the T and B lymphocyte functions, such as lymphocyte proliferation in response to the mitogen Concanavalin A and antibody production in response to BSA immunization, respectively, which was prevented by the administration of Boc2. Importantly, mesenteric lymph node lymphocytes from CTX-treated rats showed an increased release of 15-epi-LXA4. These results indicate that formyl peptide receptors mediate CTX-induced redistribution of lymphocytes and that 15-epi-LXA4 is a key mediator of the immunosuppressive effects of CTX.

14.
Int J Mol Sci ; 23(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36232883

RESUMO

Pain is a worldwide public health problem and its treatment is still a challenge since clinically available drugs do not completely reverse chronic painful states or induce undesirable effects. Crotalphine is a 14 amino acids synthetic peptide that induces a potent and long-lasting analgesic effect on acute and chronic pain models, peripherally mediated by the endogenous release of dynorphin A and the desensitization of the transient receptor potential ankyrin 1 (TRPA1) receptor. However, the effects of crotalphine on the central nervous system (CNS) and the signaling pathway have not been investigated. Thus, the central effect of crotalphine was evaluated on the partial sciatic nerve ligation (PSNL)-induced chronic neuropathic pain model. Crotalphine (100 µg/kg, p.o.)-induced analgesia on the 14th day after surgery lasting up to 24 h after administration. This effect was prevented by intrathecal administration of CB1 (AM251) or CB2 (AM630) cannabinoid receptor antagonists. Besides that, crotalphine-induced analgesia was reversed by CTOP, nor-BNI, and naltrindole, antagonists of mu, kappa, and delta-opioid receptors, respectively, and also by the specific antibodies for ß-endorphin, dynorphin-A, and met-enkephalin. Likewise, the analgesic effect of crotalphine was blocked by the intrathecal administration of minocycline, an inhibitor of microglial activation and proliferation. Additionally, crotalphine decreased the PSNL-induced IL-6 release in the spinal cord. Importantly, in vitro, crotalphine inhibited LPS-induced CD86 expression and upregulated CD206 expression in BV-2 cells, demonstrating a polarization of microglial cells towards the M2 phenotype. These results demonstrated that crotalphine, besides activating opioid and cannabinoid analgesic systems, impairs central neuroinflammation, confirming the neuromodulatory mechanism involved in the crotalphine analgesic effect.


Assuntos
Analgesia , Canabinoides , Neuralgia , Aminoácidos/metabolismo , Analgésicos/metabolismo , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Analgésicos Opioides/metabolismo , Anquirinas/metabolismo , Antagonistas de Receptores de Canabinoides/uso terapêutico , Canabinoides/uso terapêutico , Dinorfinas/metabolismo , Encefalina Metionina/metabolismo , Humanos , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Microglia/metabolismo , Minociclina/uso terapêutico , Neuralgia/metabolismo , Peptídeos , Fenótipo , Receptores Opioides/metabolismo , Medula Espinal , beta-Endorfina/metabolismo
15.
Mar Drugs ; 20(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36286438

RESUMO

Neuroinflammation is a condition associated with several types of dementia, such as Alzheimer's disease (AD), mainly caused by an inflammatory response to amyloid peptides that induce microglial activation, with subsequent cytokine release. Neuronal caspase-1 from inflammasome and cathepsin B are key enzymes mediating neuroinflammation in AD, therefore, revealing new molecules to modulate these enzymes may be an interesting approach to treat neurodegenerative diseases. In this study, we searched for new caspase-1 and cathepsin B inhibitors from five species of Brazilian marine invertebrates (four cnidarians and one echinoderm). The results show that the extract of the box jellyfish Chiropsalmus quadrumanus inhibits caspase-1. This extract was fractionated, and the products monitored for their inhibitory activity, until the obtention of a pure molecule, which was identified as trigonelline by mass spectrometry. Moreover, four extracts inhibit cathepsin B, and Exaiptasia diaphana was selected for subsequent fractionation and characterization, resulting in the identification of betaine as being responsible for the inhibitory action. Both molecules are already found in marine organisms, however, this is the first study showing a potent inhibitory effect on caspase-1 and cathepsin B activities. Therefore, these new prototypes can be considered for the enzyme inhibition and subsequent control of the neuroinflammation.


Assuntos
Doença de Alzheimer , Catepsina B , Humanos , Animais , Caspase 1/farmacologia , Inflamassomos , Microglia , Doenças Neuroinflamatórias , Organismos Aquáticos , Betaína , Citocinas , Peptídeos/farmacologia , Invertebrados , Peptídeos beta-Amiloides/farmacologia
16.
Cells ; 11(2)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053363

RESUMO

Increased collagen-derived advanced glycation end-products (AGEs) are consistently related to painful diseases, including osteoarthritis, diabetic neuropathy, and neurodegenerative disorders. We have recently developed a model combining a two-dimensional glycated extracellular matrix (ECM-GC) and primary dorsal root ganglion (DRG) that mimicked a pro-nociceptive microenvironment. However, culturing primary cells is still a challenge for large-scale screening studies. Here, we characterized a new model using ECM-GC as a stimulus for human sensory-like neurons differentiated from SH-SY5Y cell lines to screen for analgesic compounds. First, we confirmed that the differentiation process induces the expression of neuron markers (MAP2, RBFOX3 (NeuN), and TUBB3 (ß-III tubulin), as well as sensory neuron markers critical for pain sensation (TRPV1, SCN9A (Nav1.7), SCN10A (Nav1.8), and SCN11A (Nav1.9). Next, we showed that ECM-GC increased c-Fos expression in human sensory-like neurons, which is suggestive of neuronal activation. In addition, ECM-GC upregulated the expression of critical genes involved in pain, including SCN9A and TACR1. Of interest, ECM-GC induced substance P release, a neuropeptide widely involved in neuroinflammation and pain. Finally, morphine, the prototype opiate, decreased ECM-GC-induced substance P release. Together, our results suggest that we established a functional model that can be useful as a platform for screening candidates for the management of painful conditions.


Assuntos
Analgésicos/análise , Analgésicos/farmacologia , Colágeno/farmacologia , Avaliação Pré-Clínica de Medicamentos , Modelos Biológicos , Células Receptoras Sensoriais/citologia , Animais , Antígenos de Neoplasias/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Galectina 3/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Receptores da Neurocinina-1/genética , Receptores da Neurocinina-1/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Substância P/metabolismo , beta-Endorfina/metabolismo
17.
J Clin Invest, v. 133, n. 3, e163735, dez. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4719

RESUMO

Pain signals are relayed to the brain via a nociceptive system, and in rare situations, this nociceptive system contains genetic variants that can limit pain response. Here we questioned whether a human transient receptor potential vanilloid 1 (TRPV1) missense variant causes a resistance to noxious stimuli and further if we can target this region by a cell-permeable peptide as a pain therapeutic. Initially using a computational approach, we identified a human K710N TRPV1 missense variant in an otherwise highly conserved region of mammalian TRPV1. After generating a TRPV1K710N knock-in mouse using CRISPR/Cas9, we discovered the K710N variant reduced capsaicin-induced calcium influx in dorsal root ganglion neurons. The TRPV1K710N rodents also had less acute behavioral response to chemical noxious stimuli and less hypersensitivity to nerve injury-induced pain, while leaving the response to noxious heat intact. Furthermore, blocking this K710 region in wild-type rodents by a cell-penetrating peptide limited acute behavioral responses to noxious stimuli and rescued pain hypersensitivity induced by nerve injury back to baseline. These findings identify K710 TRPV1 as a discrete site crucial for the control of nociception and provides new insights into how to leverage rare genetic variants in humans to uncover fresh strategies for developing pain therapeutics.

18.
Mar Drugs, v. 20, 10, 614, set. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4678

RESUMO

Neuroinflammation is a condition associated with several types of dementia, such as Alzheimer’s disease (AD), mainly caused by an inflammatory response to amyloid peptides that induce microglial activation, with subsequent cytokine release. Neuronal caspase-1 from inflammasome and cathepsin B are key enzymes mediating neuroinflammation in AD, therefore, revealing new molecules to modulate these enzymes may be an interesting approach to treat eurodegenerative diseases. In this study, we searched for new caspase-1 and cathepsin B inhibitors from five species of Brazilian marine invertebrates (four cnidarians and one echinoderm). The results show that the extract of the box jellyfish Chiropsalmus quadrumanus inhibits caspase-1. This extract was fractionated, and the products monitored for their inhibitory activity, until the obtention of a pure molecule, which was identified as trigonelline by mass spectrometry. Moreover, four extracts inhibit cathepsin B, and Exaiptasia diaphana was selected for subsequent fractionation and characterization, resulting in the identification of betaine as being responsible for the inhibitory action. Both molecules are already found in marine organisms, however, this is the first study showing a potent inhibitory effect on caspase-1 and cathepsin B activities. Therefore, these new prototypes can be considered for the enzyme inhibition and subsequent control of the neuroinflammation.

19.
Int J Mol Sci, v. 23, n. 19, 11571, set. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4556

RESUMO

Pain is a worldwide public health problem and its treatment is still a challenge since clinically available drugs do not completely reverse chronic painful states or induce undesirable effects. Crotalphine is a 14 amino acids synthetic peptide that induces a potent and long-lasting analgesic effect on acute and chronic pain models, peripherally mediated by the endogenous release of dynorphin A and the desensitization of the transient receptor potential ankyrin 1 (TRPA1) receptor. However, the effects of crotalphine on the central nervous system (CNS) and the signaling pathway have not been investigated. Thus, the central effect of crotalphine was evaluated on the partial sciatic nerve ligation (PSNL)-induced chronic neuropathic pain model. Crotalphine (100 µg/kg, p.o.)-induced analgesia on the 14th day after surgery lasting up to 24 h after administration. This effect was prevented by intrathecal administration of CB1 (AM251) or CB2 (AM630) cannabinoid receptor antagonists. Besides that, crotalphine-induced analgesia was reversed by CTOP, nor-BNI, and naltrindole, antagonists of mu, kappa, and delta-opioid receptors, respectively, and also by the specific antibodies for β-endorphin, dynorphin-A, and met-enkephalin. Likewise, the analgesic effect of crotalphine was blocked by the intrathecal administration of minocycline, an inhibitor of microglial activation and proliferation. Additionally, crotalphine decreased the PSNL-induced IL-6 release in the spinal cord. Importantly, in vitro, crotalphine inhibited LPS-induced CD86 expression and upregulated CD206 expression in BV-2 cells, demonstrating a polarization of microglial cells towards the M2 phenotype. These results demonstrated that crotalphine, besides activating opioid and cannabinoid analgesic systems, impairs central neuroinflammation, confirming the neuromodulatory mechanism involved in the crotalphine analgesic effect.

20.
J Venom Res, v. 12, p. 1-8, jan. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4480

RESUMO

Venom of cobras of genus Naja, including Naja kaouthia, can relieve pain in acute and chronic conditions. We investigated the effects of oral and intraplantar administration of the Naja kaouthia venom and its fractions on painrelated responses in an inflammatory pain model in rats. Male Wistar rats received a hind paw injection of prostaglandin E2 (PGE2) to induce inflammatory pain and either oral or intraplantar administration of Naja kaouthia venom and its fractions (fractions 1 to 5). In addition, separate groups of rats with oral administration of fraction 3 of the Naja kaouthia venom also received either μ-, κ- or δ-opioid receptor antagonists, which were injected into the hind paw by intraplantar route. Mechanical thresholds were assessed on the hind paw before and after treatments. Fractionation of Naja kaouthia venom was performed using size exclusion chromatography. Naja kaouthia venom reduced pain-related responses in the inflammatory pain model when administered by oral and intraplantar routes. Fractions 1, 3, 4 and 5 of the Naja kaouthia venom administered by oral route decreased PGE2-induced pain sensitivity, while fraction 2 did not modify pain-related responses. Hind paw injection of naloxone, a non-specific opioid receptor antagonist, abolished the analgesic effects of the Naja kaouthia venom as well of that for fraction 3. Additionally, hind paw injection of either μ-, κ- or δ-opioid receptor antagonists blocked the pain relief induced by fraction 3. This study indicates that the Naja kaouthia venom and its fractionated forms, particularly fraction 3, may be potential therapeutic targets for pain management and peripheral opioid receptors mediate the pain relief induced by fraction 3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA