Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36314898

RESUMO

As currently circumscribed, Acrogenospora (Acrogenosporaceae, Minutisphaerales, Dothideomycetes) is a genus of saprobic hyphomycetes with distinctive conidia. Although considered common and cosmopolitan, the genus is poorly represented by sequence data, and no neotropical representatives are present in public sequence databases. Consequently, Acrogenospora has been largely invisible to ecological studies that rely on sequence-based identification. As part of an effort to identify fungi collected during ecological studies, we identified strains of Acrogenospora isolated in culture from seeds in the soil seed bank of a lowland tropical forest in Panama. Here we describe Acrogenospora terricola sp. nov. based on morphological and phylogenetic analyses. We confirm that the genus has a pantropical distribution. The observation of Acrogenospora infecting seeds in a terrestrial environment contrasts with previously described species in the genus, most of which occur on decaying wood in freshwater environments. This work highlights the often hidden taxonomic value of collections derived from ecological studies of fungal communities and the ways in which rich sequence databases can shed light on the identity, distributions and diversity of cryptic microfungi.


Assuntos
Ascomicetos , Banco de Sementes , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Florestas , Filogenia , RNA Ribossômico 16S/genética , Sementes/microbiologia , Análise de Sequência de DNA , Solo , Clima Tropical , Panamá
2.
Ecology ; 99(9): 1988-1998, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30074614

RESUMO

Seeds of tropical pioneer trees have chemical and physical characteristics that determine their capacity to persist in the soil seed bank. These traits allow seeds to survive in the soil despite diverse predators and pathogens, and to germinate and recruit even decades after dispersal. Defenses in seedlings and adult plants often are described in terms of tradeoffs between chemical and physical defense, but the interplay of defensive strategies has been evaluated only rarely for seeds. Here we evaluated whether classes of seed defenses were negatively correlated across species (consistent with tradeoffs in defense strategies), or whether groups of traits formed associations across species (consistent with seed defense syndromes). Using 16 of the most common pioneer tree species in a neotropical lowland forest in Panama we investigated relationships among four physical traits (seed fracture resistance, seed coat thickness, seed permeability, and seed mass) and two chemical traits (number of phenolic compounds and phenolic peak area), and their association with seed persistence. In addition, seed toxicity was assessed with bioassays in which we evaluated the activity of seed extracts against representative fungal pathogens and a model invertebrate. We did not find univariate tradeoffs between chemical and physical defenses. Instead, we found that seed permeability - a trait that distinguishes physical dormancy from other dormancy types - was positively associated with chemical defense traits and negatively associated with physical defense traits. Using a linear discriminant analysis and a hierarchical cluster analysis we found evidence to distinguish three distinct seed defense syndromes that correspond directly with seed dormancy classes (i.e., quiescent, physical, and physiological). Our data suggest that short and long-term persistence of seeds can be achieved via two strategies: having permeable seeds that are well defended chemically, corresponding to the physiologically dormant defense syndrome; or having impermeable seeds that are well defended physically, corresponding to the physically dormant defense syndrome. In turn, transient seeds appear to have a lower degree of chemical and physical defenses, corresponding to the quiescent defense syndrome. Overall, we find that seed defense and seed dormancy are linked, suggesting that environmental pressures on seed persistence and for delayed germination can select for trait combinations defining distinct dormancy-defense syndromes.


Assuntos
Dormência de Plantas , Sementes , Germinação , Humanos , Panamá , Solo , Síndrome
3.
New Phytol ; 214(1): 108-119, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27864964

RESUMO

It was recently proposed that boron might be the most important nutrient structuring tree species distributions in tropical forests. Here we combine observational and experimental studies to test this hypothesis for lowland tropical forests of Panama. Plant-available boron is uniformly low in tropical forest soils of Panama and is not significantly associated with any of the > 500 species in a regional network of forest dynamics plots. Experimental manipulation of boron supply to seedlings of three tropical tree species revealed no evidence of boron deficiency or toxicity at concentrations likely to occur in tropical forest soils. Foliar boron did not correlate with soil boron along a local scale gradient of boron availability. Fifteen years of boron addition to a tropical forest increased plant-available boron by 70% but did not significantly change tree productivity or boron concentrations in live leaves, wood or leaf litter. The annual input of boron in rainfall accounts for a considerable proportion of the boron in annual litterfall and is similar to the pool of plant-available boron in the soil, and is therefore sufficient to preclude boron deficiency. We conclude that boron does not influence tree species distributions in Panama and presumably elsewhere in the lowland tropics.


Assuntos
Boro/farmacologia , Florestas , Árvores/fisiologia , Clima Tropical , Biomassa , Panamá , Chuva , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Solo/química , Especificidade da Espécie , Árvores/efeitos dos fármacos
4.
New Phytol ; 212(2): 400-8, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27282142

RESUMO

Soils influence tropical forest composition at regional scales. In Panama, data on tree communities and underlying soils indicate that species frequently show distributional associations to soil phosphorus. To understand how these associations arise, we combined a pot experiment to measure seedling responses of 15 pioneer species to phosphorus addition with an analysis of the phylogenetic structure of phosphorus associations of the entire tree community. Growth responses of pioneers to phosphorus addition revealed a clear tradeoff: species from high-phosphorus sites grew fastest in the phosphorus-addition treatment, while species from low-phosphorus sites grew fastest in the low-phosphorus treatment. Traits associated with growth performance remain unclear: biomass allocation, phosphatase activity and phosphorus-use efficiency did not correlate with phosphorus associations; however, phosphatase activity was most strongly down-regulated in response to phosphorus addition in species from high-phosphorus sites. Phylogenetic analysis indicated that pioneers occur more frequently in clades where phosphorus associations are overdispersed as compared with the overall tree community, suggesting that selection on phosphorus acquisition and use may be strongest for pioneer species with high phosphorus demand. Our results show that phosphorus-dependent growth rates provide an additional explanation for the regional distribution of tree species in Panama, and possibly elsewhere.


Assuntos
Fósforo/farmacologia , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Clima Tropical , Biomassa , Fosfoproteínas Fosfatases/metabolismo , Filogenia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Especificidade da Espécie , Árvores/efeitos dos fármacos
5.
Am Nat ; 184(3): 352-63, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25141144

RESUMO

Many organisms exhibit distinct breeding seasons tracking food availability. If conspecific populations inhabit areas that experience different temporal cycles in food availability spurred by variation in precipitation regimes, then they should display asynchronous breeding seasons. Thus, such populations might exhibit a temporal barrier to gene flow, which may potentially promote genetic differentiation. We test a central prediction of this hypothesis, namely, that individuals living in areas with more asynchronous precipitation regimes should be more genetically differentiated than individuals living in areas with more similar precipitation regimes. Using mitochondrial DNA sequences, climatic data, and geographical/ecological distances between individuals of 57 New World bird species mostly from the tropics, we examined the effect of asynchronous precipitation (a proxy for asynchronous resource availability) on genetic differentiation. We found evidence for a positive and significant cross-species effect of precipitation asynchrony on genetic distance after accounting for geographical/ecological distances, suggesting that current climatic conditions may play a role in population differentiation. Spatial asynchrony in climate may thus drive evolutionary divergence in the absence of overt geographic barriers to gene flow; this mechanism contrasts with those invoked by most models of biotic diversification emphasizing physical or ecological changes to the landscape as drivers of divergence.


Assuntos
Aves/genética , Clima , Genética Populacional , Chuva , Reprodução/genética , América , Animais , Sequência de Bases , DNA Mitocondrial/genética , Fluxo Gênico , Variação Genética , Geografia , Modelos Genéticos , Filogenia , Estações do Ano , Especificidade da Espécie
6.
Front Plant Sci ; 5: 799, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25628640

RESUMO

Germination from the soil seed bank (SSB) is an important determinant of species composition in tropical forest gaps, with seed persistence in the SSB allowing trees to recruit even decades after dispersal. The capacity to form a persistent SSB is often associated with physical dormancy, where seed coats are impermeable at the time of dispersal. Germination literature often speculates, without empirical evidence, that dormancy-break in physically dormant seeds is the result of microbial action and/or abrasion by soil particles. We tested the microbial/soil abrasion hypothesis in four widely distributed neotropical pioneer tree species (Apeiba membranacea, Luehea seemannii, Ochroma pyramidale, and Cochlospermum vitifolium). Seeds were buried in five common gardens in a lowland tropical forest in Panama, and recovered at 1, 3, 6, and 12 months after burial. Seed permeability, microbial infection, seed coat thickness, and germination were measured. Parallel experiments compared the germination fraction of fresh and aged seeds without soil contact, and in seeds as a function of seed permeability. Contrary to the microbial/soil abrasion hypothesis the proportion of permeable seeds, and of seeds infected by cultivable microbes, decreased as a function of burial duration. Furthermore, seeds stored in dark and dry conditions for 2 years showed a higher proportion of seed germination than fresh seeds in identical germination conditions. We determined that permeable seeds of A. membranacea and O. pyramidale had cracks in the chalazal area or lacked the chalazal plug, whereas all surfaces of impermeable seeds were intact. Our results are inconsistent with the microbial/soil abrasion hypothesis of dormancy loss and instead suggest the existence of multiple dormancy phenotypes, where a fraction of each seed cohort is dispersed in a permeable state and germinates immediately, while the impermeable seed fraction accounts for the persistent SSB. Thus, we conclude that fluctuations in the soil temperature in the absence of soil abrasion and microbial infection are sufficient to break physical dormancy on seeds of tropical pioneer trees.

7.
Proc Biol Sci ; 278(1717): 2437-45, 2011 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-21227965

RESUMO

Plant phenology is concerned with the timing of recurring biological events. Though phenology has traditionally been studied using intensive surveys of a local flora, results from such surveys are difficult to generalize to broader spatial scales. In this study, contrastingly, we assembled a continental-scale dataset of herbarium specimens for the emblematic genus of Neotropical pioneer trees, Cecropia, and applied Fourier spectral and cospectral analyses to investigate the reproductive phenology of 35 species. We detected significant annual, sub-annual and continuous patterns, and discuss the variation in patterns within and among climatic regions. Although previous studies have suggested that pioneer species generally produce flowers continually throughout the year, we found that at least one third of Cecropia species are characterized by clear annual flowering behaviour. We further investigated the relationships between phenology and climate seasonality, showing strong associations between phenology and seasonal variations in precipitation and temperature. We also verified our results against field survey data gathered from the literature. Our findings indicate that herbarium material is a reliable resource for use in the investigation of large-scale patterns in plant phenology, offering a promising complement to local intensive field studies.


Assuntos
Cecropia/fisiologia , Clima Tropical , América Central , Flores , Análise de Fourier , Museus , Reprodução , Estações do Ano , América do Sul , Índias Ocidentais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA