Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 664: 215-221, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743114

RESUMO

Sugarcane is one of the main crops used around the world as a feedstock for the production of sucrose and biofuel. Prior to harvesting, sugarcane dry leaves are burned to facilitate manual cutting and enhance productivity. This practice generates ashes from sugarcane straw (hereafter referred as SCA), which may be carried to aquatic ecosystems, where its impacts on organisms and ecosystem integrity remain unknown. Here, we experimentally tested the toxicity of five different concentrations of SCA (0, 1000, 1500, 2000 and 2500 mg/L) on three native (Astyanax lacustris, Moenkhausia bonita and M. forestii) and two non-native (Oreochromis niloticus and Poecilia reticulata) fish from the Paraná River Basin, Brazil. The toxicity was estimated by calculating the median lethal concentration (LC50-24h) and the hepatosomatic index (HSI). We hypothesised that native fish are more sensitive to an increase in SCA than non-native fish. We verified that the mortality of native fish sharply increased with the increase in higher SCA concentration (LC50-24h values: A. lacustris = 2525.71 mg/L, M. bonita = 2124.95 mg/L and M. forestii = 1981.74 mg/L). However, no deaths were recorded for non-native fish species in any SCA concentrations. Accordingly, the HSI index values statistically differed with the increase in SCA concentrations for native fish, while for non-native fish we did not observe any difference. Therefore, only native species died or suffered liver damage with an increase in SCA concentrations. Extrapolating our findings to natural environments, we suggest that sugarcane burning, a widely used agricultural technique, has the potential to reduce the population size of native organisms and facilitate the dominance of non-native fish species in aquatic ecosystems.


Assuntos
Agricultura/métodos , Incêndios , Saccharum/crescimento & desenvolvimento , Poluentes Químicos da Água/análise , Animais , Brasil , Characidae , Ciclídeos , Ecossistema , Monitoramento Ambiental
2.
PLoS One ; 12(3): e0174499, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28358822

RESUMO

Studies in freshwater ecosystems are seeking to improve understanding of carbon flow in food webs and stable isotopes have been influential in this work. However, variation in isotopic values of basal production sources could either be an asset or a hindrance depending on study objectives. We assessed the potential for basin geology and local limnological conditions to predict stable carbon and nitrogen isotope values of six carbon sources at multiple locations in four Neotropical floodplain ecosystems (Paraná, Pantanal, Araguaia, and Amazon). Limnological conditions exhibited greater variation within than among systems. δ15N differed among basins for most carbon sources, but δ13C did not (though high within-basin variability for periphyton, phytoplankton and particulate organic carbon was observed). Although δ13C and δ15N values exhibited significant correlations with some limnological factors within and among basins, those relationships differed among carbon sources. Regression trees for both carbon and nitrogen isotopes for all sources depicted complex and in some cases nested relationships, and only very limited similarity was observed among trees for different carbon sources. Although limnological conditions predicted variation in isotope values of carbon sources, we suggest the resulting models were too complex to enable mathematical corrections of source isotope values among sites based on these parameters. The importance of local conditions in determining variation in source isotope values suggest that isotopes may be useful for examining habitat use, dispersal and patch dynamics within heterogeneous floodplain ecosystems, but spatial variability in isotope values needs to be explicitly considered when testing ecosystem models of carbon flow in these systems.


Assuntos
Carbono/química , Ecossistema , Cadeia Alimentar , Fitoplâncton/química , Carbono/metabolismo , Radioisótopos de Carbono/química , Radioisótopos de Carbono/metabolismo , Água Doce , Isótopos/química , Lagos , Limnologia , Radioisótopos de Nitrogênio/química , Radioisótopos de Nitrogênio/metabolismo , Fitoplâncton/metabolismo , Rios , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA