Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Sci. agric. ; 79(1)2022.
Artigo em Inglês | VETINDEX | ID: vti-760482

RESUMO

ABSTRACT The analysis of nematode communities allows inferring consequences of management practices on the soil food web. We studied the taxonomic structure of nematode communities in preserved areas of the Atlantic forest (native forest = NF) in Ponta Grossa, Paraná State, Brazil, and in three different agroecosystems in neighboring areas to assess the effect of agricultural land use on nematode assemblages. Agroecosystems were located in a red latosol cropped during 30 years under conventional tillage (CT), no-tillage (NT), and minimal tillage (MT). We collected ten composite soil samples in each area in the summer. Nematodes were extracted by Baermann funnel and fixed with formalin. Subsequently, individuals were classified into taxonomic groups and counted on a Peters slide to determine densities of each taxon. Plant-parasitic and free-living nematodes were classified at the genus level. Data were analyzed with the parameters abundance, Bray & Curtis, Shannon-Weaver, and Simpson indexes. We recorded 35 genera and abundance of nematodes in MT and NT areas was more similar. Higher richness was observed in NF in relation to cropped areas, especially under NT and CT. The PCA and clustering analyses from both nematode communities and soil chemical characteristics showed that MT and CT were more similar and NT was clustered near NF. The replacement of native vegetation by cropping systems caused a reduction of nematode diversity, demonstrating the influence of agricultural practices on nematode communities.

2.
Sci. agric ; 79(01): 1-7, 2022. tab, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1498015

RESUMO

The analysis of nematode communities allows inferring consequences of management practices on the soil food web. We studied the taxonomic structure of nematode communities in preserved areas of the Atlantic forest (native forest = NF) in Ponta Grossa, Paraná State, Brazil, and in three different agroecosystems in neighboring areas to assess the effect of agricultural land use on nematode assemblages. Agroecosystems were located in a red latosol cropped during 30 years under conventional tillage (CT), no-tillage (NT), and minimal tillage (MT). We collected ten composite soil samples in each area in the summer. Nematodes were extracted by Baermann funnel and fixed with formalin. Subsequently, individuals were classified into taxonomic groups and counted on a Peters slide to determine densities of each taxon. Plant-parasitic and free-living nematodes were classified at the genus level. Data were analyzed with the parameters abundance, Bray & Curtis, Shannon-Weaver, and Simpson indexes. We recorded 35 genera and abundance of nematodes in MT and NT areas was more similar. Higher richness was observed in NF in relation to cropped areas, especially under NT and CT. The PCA and clustering analyses from both nematode communities and soil chemical characteristics showed that MT and CT were more similar and NT was clustered near NF. The replacement of native vegetation by cropping systems caused a reduction of nematode diversity, demonstrating the influence of agricultural practices on nematode communities.


Assuntos
Análise do Solo , Características do Solo , Microbiologia do Solo , Nematoides/classificação , Zonas Agrícolas
3.
Sci. agric ; 79(1): e20200088, 2022. tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1437953

RESUMO

The analysis of nematode communities allows inferring consequences of management practices on the soil food web. We studied the taxonomic structure of nematode communities in preserved areas of the Atlantic forest (native forest = NF) in Ponta Grossa, Paraná State, Brazil, and in three different agroecosystems in neighboring areas to assess the effect of agricultural land use on nematode assemblages. Agroecosystems were located in a red latosol cropped during 30 years under conventional tillage (CT), no-tillage (NT), and minimal tillage (MT). We collected ten composite soil samples in each area in the summer. Nematodes were extracted by Baermann funnel and fixed with formalin. Subsequently, individuals were classified into taxonomic groups and counted on a Peters slide to determine densities of each taxon. Plant-parasitic and free-living nematodes were classified at the genus level. Data were analyzed with the parameters abundance, Bray & Curtis, Shannon-Weaver, and Simpson indexes. We recorded 35 genera and abundance of nematodes in MT and NT areas was more similar. Higher richness was observed in NF in relation to cropped areas, especially under NT and CT. The PCA and clustering analyses from both nematode communities and soil chemical characteristics showed that MT and CT were more similar and NT was clustered near NF. The replacement of native vegetation by cropping systems caused a reduction of nematode diversity, demonstrating the influence of agricultural practices on nematode communities.(AU)


Assuntos
Solo/parasitologia , Análise do Solo , Nematoides , Brasil , Biodiversidade
4.
Biota Neotrop. (Online, Ed. ingl.) ; 20(1): e20190782, 2020. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1055258

RESUMO

Abstract: Several studies have characterized and delimited subterranean ant assemblages. Soil extraction, one of the methods employed to access this fauna, employs the removal of monoliths. One of the most widely used methods for the extraction of soil sampling is called TSBF (developed by the Tropical Soil Biology and Fertility Programme). This method provides relevant data about the species associated with the soil. In the present study we characterized assemblages of subterranean ants using the TSBF method in different subtropical areas of the Neotropics. We considered two sampling designs in different localities. The first design resulted in 315 TSBF samples obtained from layers at distinct depths. The second design resulted in 270 TSBF samples and 270 epigaeic pitfall trap samples. This material was used to delimit the species that occur exclusively in the subterranean stratum (TSBF) and that are not found on the soil surface. A total of 281 species were recorded. Of these, 57 can be considered subterranean, based on their occurrence in subterranean strata. We also verified that the highest occurrence of ants was in the first 10 cm of soil depth. Due to the importance of using methods that efficiently extract the subterranean ant fauna in studies, we suggest the TSBF method should be used to sample ants or to associate this method with epigaeic pitfall traps to delimit strictly subterranean assemblages in specific community stratification studies.


Resumo: Vários estudos têm caracterizado e delimitado assembleias de formigas subterrâneas. A extração de solo, um dos métodos utilizados para amostragem dessa fala, implica na remoção de monólitos. Um dos métodos mais utilizados na extração de monólitos é chamado TSBF (desenvolvido pelo Programa Tropical Soil Biology and Fertility). Esse método fornece dados extremamente relevantes sobre as espécies associadas ao solo. No presente estudo, nós caracterizamos as assembleias de formigas subterrâneas usando o método TSBF em diferentes áreas subtropicais do Neotrópico. Utilizamos dois delineamentos amostrais distintos. O primeiro delineamento resultou em 315 amostras de TSBF obtidas a partir da estratificação do solo. O segundo resultou em 270 amostras de TSBF mais 270 provenientes de armadilhas pitfall epigeicas. Esse material foi utilizado para delimitar espécies que ocorrem exclusivamente no estrato subterrâneo (TSBF) e não são encontradas na superfície do solo. Registramos um total de 281 espécies. Destas, 57 podem ser consideradas subterrâneas (baseado na ocorrência no respectivo estrato). Também verificamos que a maior ocorrência de formigas se deu nos primeiros 10 cm de profundidade. Devido à importância do uso de métodos que coletem eficientemente formigas subterrâneas, sugerimos o uso do método TSBF em estudos de estratificação de comunidades ou sua associação a armadilhas do tipo pitfall epigeica para delimitar assembleias estritamente subterrâneas.

5.
Sci. agric. ; 76(2): 165-171, Mar.-Apr. 2019. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-740865

RESUMO

Soil mesofauna consists of small invertebrates that live in the soil or litter and are sensitive to climatic conditions, management systems, plant cover and physical or chemical soil attributes. These organisms are active in the cycling of nutrients, since they fragment the organic matter hereby accelerating microbial decomposition. The aim of this study was to evaluate the invertebrate community in no-tillage, conventional tillage, minimum tillage and secondary forest in regeneration to determine the relationship of mesofauna to litter, soil attributes, management and seasonality. Therefore, ten soil samples in each system and eight litter samples in no-tillage and the forest were taken over four seasons. These samples remained in Berlese extractors for seven days for quantification and identification of mesofauna. For each fauna sample, soil samples were collected for chemical analysis. Next, diversity indices and richness were calculated and multivariate analyses were used to establish relationships between the mesofauna, soil attributes and management. In the soil, mites were more abundant in the agricultural systems than in the forest, but the springtails, sensitive to low moisture and high temperature, were more abundant in the forest. Diversity and richness were higher in soil from the forest than under other systems. In no-tillage, there was a lower density of soil mesofauna, however, under this system, many invertebrates live in litter, since litter is the main food resource for them. In forest litter, we found lower invertebrate density and higher diversity than in no-tillage. Carbon, basic cations, pH, Al and V% were the attributes that best explained fauna variability in the systems.(AU)

6.
Sci. agric ; 76(2): 165-171, Mar.-Apr. 2019. tab, graf
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1497771

RESUMO

Soil mesofauna consists of small invertebrates that live in the soil or litter and are sensitive to climatic conditions, management systems, plant cover and physical or chemical soil attributes. These organisms are active in the cycling of nutrients, since they fragment the organic matter hereby accelerating microbial decomposition. The aim of this study was to evaluate the invertebrate community in no-tillage, conventional tillage, minimum tillage and secondary forest in regeneration to determine the relationship of mesofauna to litter, soil attributes, management and seasonality. Therefore, ten soil samples in each system and eight litter samples in no-tillage and the forest were taken over four seasons. These samples remained in Berlese extractors for seven days for quantification and identification of mesofauna. For each fauna sample, soil samples were collected for chemical analysis. Next, diversity indices and richness were calculated and multivariate analyses were used to establish relationships between the mesofauna, soil attributes and management. In the soil, mites were more abundant in the agricultural systems than in the forest, but the springtails, sensitive to low moisture and high temperature, were more abundant in the forest. Diversity and richness were higher in soil from the forest than under other systems. In no-tillage, there was a lower density of soil mesofauna, however, under this system, many invertebrates live in litter, since litter is the main food resource for them. In forest litter, we found lower invertebrate density and higher diversity than in no-tillage. Carbon, basic cations, pH, Al and V% were the attributes that best explained fauna variability in the systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA