Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 10: 1271863, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869162

RESUMO

Introduction: Long-term pulmonary dysfunction (L-TPD) is one of the most critical manifestations of long-COVID. This lung affection has been associated with disease severity during the acute phase and the presence of previous comorbidities, however, the clinical manifestations, the concomitant consequences and the molecular pathways supporting this clinical condition remain unknown. The aim of this study was to identify and characterize L-TPD in patients with long-COVID and elucidate the main pathways and long-term consequences attributed to this condition by analyzing clinical parameters and functional tests supported by machine learning and serum proteome profiling. Methods: Patients with L-TPD were classified according to the results of their computer-tomography (CT) scan and diffusing capacity of the lungs for carbon monoxide adjusted for hemoglobin (DLCOc) tests at 4 and 12-months post-infection. Results: Regarding the acute phase, our data showed that L-TPD was favored in elderly patients with hypertension or insulin resistance, supported by pathways associated with vascular inflammation and chemotaxis of phagocytes, according to computer proteomics. Then, at 4-months post-infection, clinical and functional tests revealed that L-TPD patients exhibited a restrictive lung condition, impaired aerobic capacity and reduced muscular strength. At this time point, high circulating levels of platelets and CXCL9, and an inhibited FCgamma-receptor-mediated-phagocytosis due to reduced FcγRIII (CD16) expression in CD14+ monocytes was observed in patients with L-TPD. Finally, 1-year post infection, patients with L-TPD worsened metabolic syndrome and augmented body mass index in comparison with other patient groups. Discussion: Overall, our data demonstrated that CT scan and DLCOc identified patients with L-TPD after COVID-19. This condition was associated with vascular inflammation and impair phagocytosis of virus-antibody immune complexes by reduced FcγRIII expression. In addition, we conclude that COVID-19 survivors required a personalized follow-up and adequate intervention to reduce long-term sequelae and the appearance of further metabolic diseases.

2.
Cells ; 11(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36497137

RESUMO

The engagement of B cells with surface-tethered antigens triggers the formation of an immune synapse (IS), where the local secretion of lysosomes can facilitate antigen uptake. Lysosomes intersect with other intracellular processes, such as Toll-like Receptor (TLR) signaling and autophagy coordinating immune responses. However, the crosstalk between these processes and antigen presentation remains unclear. Here, we show that TLR stimulation induces autophagy in B cells and decreases their capacity to extract and present immobilized antigens. We reveal that TLR stimulation restricts lysosome repositioning to the IS by triggering autophagy-dependent degradation of GEF-H1, a Rho GTP exchange factor required for stable lysosome recruitment at the synaptic membrane. GEF-H1 degradation is not observed in B cells that lack αV integrins and are deficient in TLR-induced autophagy. Accordingly, these cells show efficient antigen extraction in the presence of TLR stimulation, confirming the role of TLR-induced autophagy in limiting antigen extraction. Overall, our results suggest that resources associated with autophagy regulate TLR and BCR-dependent functions, which can finetune antigen uptake by B cells. This work helps to understand the mechanisms by which B cells are activated by surface-tethered antigens in contexts of subjacent inflammation before antigen recognition, such as sepsis.


Assuntos
Linfócitos B , Receptores de Antígenos de Linfócitos B , Receptores de Antígenos de Linfócitos B/metabolismo , Antígenos/metabolismo , Receptores Toll-Like/metabolismo , Autofagia , Antígenos de Superfície/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo
3.
J Neuroinflammation ; 18(1): 292, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34920747

RESUMO

BACKGROUND: Recent evidence has shown dopamine as a major regulator of inflammation. Accordingly, dopaminergic regulation of immune cells plays an important role in the physiopathology of inflammatory disorders. Multiple sclerosis (MS) is an inflammatory disease involving a CD4+ T-cell-driven autoimmune response to central nervous system (CNS) derived antigens. Evidence from animal models has suggested that B cells play a fundamental role as antigen-presenting cells (APC) re-stimulating CD4+ T cells in the CNS as well as regulating T-cell response by mean of inflammatory or anti-inflammatory cytokines. Here, we addressed the role of the dopamine receptor D3 (DRD3), which displays the highest affinity for dopamine, in B cells in animal models of MS. METHODS: Mice harbouring Drd3-deficient or Drd3-sufficient B cells were generated by bone marrow transplantation into recipient mice devoid of B cells. In these mice, we compared the development of experimental autoimmune encephalomyelitis (EAE) induced by immunization with a myelin oligodendrocyte glycoprotein (MOG)-derived peptide (pMOG), a model that leads to CNS-autoimmunity irrespective of the APC-function of B cells, or by immunization with full-length human MOG protein (huMOG), a model in which antigen-specific activated B cells display a fundamental APC-function in the CNS. APC-function was assessed in vitro by pulsing B cells with huMOG-coated beads and then co-culturing with MOG-specific T cells. RESULTS: Our data show that the selective Drd3 deficiency in B cells abolishes the disease development in the huMOG-induced EAE model. Mechanistic analysis indicates that although DRD3-signalling did not affect the APC-function of B cells, DRD3 favours the CNS-tropism in a subset of pro-inflammatory B cells in the huMOG-induced EAE model, an effect that was associated with higher CXCR3 expression. Conversely, the results show that the selective Drd3 deficiency in B cells exacerbates the disease severity in the pMOG-induced EAE model. Further analysis shows that DRD3-stimulation increased the expression of the CNS-homing molecule CD49d in a B-cell subset with anti-inflammatory features, thus attenuating EAE manifestation in the pMOG-induced EAE model. CONCLUSIONS: Our findings demonstrate that DRD3 in B cells exerts a dual role in CNS-autoimmunity, favouring CNS-tropism of pro-inflammatory B cells with APC-function and promoting CNS-homing of B cells with anti-inflammatory features. Thus, these results show DRD3-signalling in B cells as a critical regulator of CNS-autoimmunity.


Assuntos
Autoimunidade/fisiologia , Linfócitos B/metabolismo , Dopamina/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Receptores de Dopamina D3/metabolismo , Sequência de Aminoácidos , Animais , Linfócitos B/imunologia , Células Cultivadas , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Dopamina/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de Dopamina D3/genética , Receptores de Dopamina D3/imunologia
4.
Front Cell Dev Biol ; 9: 790568, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957117

RESUMO

Lipid-related disorders, which primarily affect metabolic tissues, including adipose tissue and the liver are associated with alterations in lysosome homeostasis. Obesity is one of the more prevalent diseases, which results in energy imbalance within metabolic tissues and lysosome dysfunction. Less frequent diseases include Niemann-Pick type C (NPC) and Gaucher diseases, both of which are known as Lysosomal Storage Diseases (LSDs), where lysosomal dysfunction within metabolic tissues remains to be fully characterized. Adipocytes and hepatocytes share common pathways involved in the lysosome-autophagic axis, which are regulated by the function of cathepsins and CD36, an immuno-metabolic receptor and display alterations in lipid diseases, and thereby impacting metabolic functions. In addition to intrinsic defects observed in metabolic tissues, cells of the immune system, such as B cells can infiltrate adipose and liver tissues, during metabolic imbalance favoring inflammation. Moreover, B cells rely on lysosomes to promote the processing and presentation of extracellular antigens and thus could also present lysosome dysfunction, consequently affecting such functions. On the other hand, growing evidence suggests that cells accumulating lipids display defective inter-organelle membrane contact sites (MCSs) established by lysosomes and other compartments, which contribute to metabolic dysfunctions at the cellular level. Overall, in this review we will discuss recent findings addressing common mechanisms that are involved in lysosome dysregulation in adipocytes and hepatocytes during obesity, NPC, and Gaucher diseases. We will discuss whether these mechanisms may modulate the function of B cells and how inter-organelle contacts, emerging as relevant cellular mechanisms in the control of lipid homeostasis, have an impact on these diseases.

5.
Front Cell Dev Biol ; 9: 650817, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055780

RESUMO

The formation of an immune synapse (IS) enables B cells to capture membrane-tethered antigens, where cortical actin cytoskeleton remodeling regulates cell spreading and depletion of F-actin at the centrosome promotes the recruitment of lysosomes to facilitate antigen extraction. How B cells regulate both pools of actin, remains poorly understood. We report here that decreased F-actin at the centrosome and IS relies on the distribution of the proteasome, regulated by Ecm29. Silencing Ecm29 decreases the proteasome pool associated to the centrosome of B cells and shifts its accumulation to the cell cortex and IS. Accordingly, Ecm29-silenced B cells display increased F-actin at the centrosome, impaired centrosome and lysosome repositioning to the IS and defective antigen extraction and presentation. Ecm29-silenced B cells, which accumulate higher levels of proteasome at the cell cortex, display decreased actin retrograde flow in lamellipodia and enhanced spreading responses. Our findings support a model where B the asymmetric distribution of the proteasome, mediated by Ecm29, coordinates actin dynamics at the centrosome and the IS, promoting lysosome recruitment and cell spreading.

6.
Front Immunol ; 12: 801164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35222354

RESUMO

Upon interaction with immobilized antigens, B cells form an immune synapse where actin remodeling and re-positioning of the microtubule-organizing center (MTOC) together with lysosomes can facilitate antigen extraction. B cells have restricted cytoplasmic space, mainly occupied by a large nucleus, yet the role of nuclear morphology in the formation of the immune synapse has not been addressed. Here we show that upon activation, B cells re-orientate and adapt the size of their nuclear groove facing the immune synapse, where the MTOC sits, and lysosomes accumulate. Silencing the nuclear envelope proteins Nesprin-1 and Sun-1 impairs nuclear reorientation towards the synapse and leads to defects in actin organization. Consequently, B cells are unable to internalize the BCR after antigen activation. Nesprin-1 and Sun-1-silenced B cells also fail to accumulate the tethering factor Exo70 at the center of the synaptic membrane and display defective lysosome positioning, impairing efficient antigen extraction at the immune synapse. Thus, changes in nuclear morphology and positioning emerge as critical regulatory steps to coordinate B cell activation.


Assuntos
Actinas , Receptores de Antígenos de Linfócitos B , Actinas/metabolismo , Antígenos/metabolismo , Linfócitos B , Receptores de Antígenos de Linfócitos B/metabolismo , Sinapses/metabolismo
7.
Methods Mol Biol ; 1988: 419-437, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31147956

RESUMO

The ability of B lymphocytes to capture external antigens (Ag) and present them as peptide fragments, loaded on major histocompatibility complex (MHC) class II molecules, to CD4+ T cells is a crucial part of the adaptive immune response. This allows for T-B cooperation, a cellular communication that is required for B cells to develop into germinal centers (GC) and form mature high affinity antibody producing cells and to further develop B cell memory. MHC class II antigen presentation by B lymphocytes is a multistep process involving (1) Recognition and capture of external Ag by B lymphocytes through their B cell receptor (BCR), (2) Ag processing, which comprises the degradation of Ag in internal compartments within the B cell and loading of the corresponding peptide fragments on MHC class II molecules, and (3) Presentation of MHCII-peptide complexes to CD4+ T cells. Here, we describe how to study the biochemical and morphological changes that occur in B lymphocytes at these three major levels.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos/metabolismo , Linfócitos B/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Proteínas Imobilizadas/metabolismo , Animais , Linhagem Celular , Ativação Linfocitária/imunologia , Camundongos , Baço/citologia , Membranas Sinápticas/metabolismo
8.
J Cell Biol ; 218(7): 2247-2264, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31197029

RESUMO

B lymphocytes capture antigens from the surface of presenting cells by forming an immune synapse. Local secretion of lysosomes, which are guided to the synaptic membrane by centrosome repositioning, can facilitate the extraction of immobilized antigens. However, the molecular basis underlying their delivery to precise domains of the plasma membrane remains elusive. Here we show that microtubule stabilization, triggered by engagement of the B cell receptor, acts as a cue to release centrosome-associated Exo70, which is redistributed to the immune synapse. This process is coupled to the recruitment and activation of GEF-H1, which is required for assembly of the exocyst complex, used to promote tethering and fusion of lysosomes at the immune synapse. B cells silenced for GEF-H1 or Exo70 display defective lysosome secretion, which results in impaired antigen extraction and presentation. Thus, centrosome repositioning coupled to changes in microtubule stability orchestrates the spatial-temporal distribution of the exocyst complex to promote polarized lysosome secretion at the immune synapse.


Assuntos
Apresentação de Antígeno/genética , Linfócitos B/imunologia , Sinapses Imunológicas/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Proteínas de Transporte Vesicular/genética , Animais , Apresentação de Antígeno/imunologia , Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Membrana Celular/imunologia , Polaridade Celular/genética , Polaridade Celular/imunologia , Centrossomo/imunologia , Exocitose/genética , Exocitose/imunologia , Lisossomos/genética , Lisossomos/imunologia , Camundongos , Microtúbulos/genética , Microtúbulos/imunologia , Receptores de Antígenos de Linfócitos B/genética , Receptores de Antígenos de Linfócitos B/imunologia
9.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1076-1087, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30904612

RESUMO

Lysosomes are dynamic organelles, which can fuse with a variety of targets and undergo constant regeneration. They can move along microtubules in a retrograde and anterograde fashion by using motor proteins, kinesin and dynein, being main players in extracellular secretion, intracellular components degradation and recycling. Moreover, lysosomes interact with other intracellular organelles to regulate their turnover, such as ER, mitochondria and peroxisomes. The correct localization of lysosomes is relevant in several physiological processes, including appropriate antigen presentation, neurotransmission and receptors modulation in neuronal synapsis, whereas hepatic lysosomes and autophagy are master regulators of nutrient homeostasis. Alterations in lysosome function due to mutation of genes encoding lysosomal proteins, soluble hydrolases as well as membrane proteins, lead to lysosomal storage diseases (LSDs). Lysosomes containing undegraded substrates are finally stacked and therefore miss positioned inside the cell, leading to lysosomal dysfunction, which impacts a wide range of cellular functions.


Assuntos
Movimento Celular , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo , Proteínas/metabolismo , Humanos , Doenças por Armazenamento dos Lisossomos/genética , Redes e Vias Metabólicas/genética , Modelos Biológicos , Mutação , Proteínas/genética
10.
Front Immunol ; 10: 225, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873155

RESUMO

Engagement of the B cell receptor (BCR) with surface-tethered antigens leads to the formation of an immune synapse (IS), where cell signaling and antigen uptake are tightly coordinated. Centrosome re-orientation to the immune synapse has emerged as a critical regulatory step to guide the local recruitment and secretion of lysosomes, which can facilitate the extraction of immobilized antigens. This process is coupled to actin remodeling at the centrosome and at the immune synapse, which is crucial to promote cell polarity. How B cells balance both pools of actin cytoskeleton to achieve a polarized phenotype during the formation of an immune synapse is not fully understood. Here, we reveal that B cells rely on proteasome activity to achieve this task. The proteasome is a multi-catalytic protease that degrades cytosolic and nuclear proteins and its dysfunction is associated with diseases, such as cancer and autoimmunity. Our results show that resting B cells contain an active proteasome pool at the centrosome, which is required for efficient actin clearance at this level. As a result of proteasome inhibition, activated B cells do not deplete actin at the centrosome and are unable to separate the centrosome from the nucleus and thus display impaired polarity. Consequently, lysosome recruitment to the immune synapse, antigen extraction and presentation are severely compromised in B cells with diminished proteasome activity. Additionally, we found that proteasome inhibition leads to impaired actin remodeling at the immune synapse, where B cells display defective spreading responses and distribution of key signaling molecules at the synaptic membrane. Overall, our results reveal a new role for the proteasome in regulating the immune synapse of B cells, where the intracellular compartmentalization of proteasome activity controls cytoskeleton remodeling between the centrosome and synapse, with functional repercussions in antigen extraction and presentation.


Assuntos
Actinas/metabolismo , Antígenos/metabolismo , Linfócitos B/fisiologia , Sinapses Imunológicas/imunologia , Complexo de Endopeptidases do Proteassoma/fisiologia , Animais , Polaridade Celular , Centrossomo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos B/fisiologia , Transdução de Sinais/fisiologia , Quinase Syk/fisiologia
11.
Nat Commun ; 10(1): 735, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760704

RESUMO

Inter-organelle signalling has essential roles in cell physiology encompassing cell metabolism, aging and temporal adaptation to external and internal perturbations. How such signalling coordinates different organelle functions within adaptive responses remains unknown. Membrane traffic is a fundamental process in which membrane fluxes need to be sensed for the adjustment of cellular requirements and homeostasis. Studying endoplasmic reticulum-to-Golgi trafficking, we found that Golgi-based, KDEL receptor-dependent signalling promotes lysosome repositioning to the perinuclear area, involving a complex process intertwined to autophagy, lipid-droplet turnover and Golgi-mediated secretion that engages the microtubule motor protein dynein-LRB1 and the autophagy cargo receptor p62/SQSTM1. This process, here named 'traffic-induced degradation response for secretion' (TIDeRS) discloses a cellular mechanism by which nutrient and membrane sensing machineries cooperate to sustain Golgi-dependent protein secretion.


Assuntos
Autofagia , Gotículas Lipídicas/metabolismo , Lisossomos/metabolismo , Receptores de Peptídeos/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Dineínas/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Células HeLa , Humanos , Lisossomos/ultraestrutura , Microscopia Eletrônica de Transmissão , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Transporte Proteico , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais
12.
Mol Immunol ; 101: 140-145, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29935436

RESUMO

The capacity of B lymphocytes to produce specific antibodies, particularly broadly neutralizing antibodies that provide immunity to viral pathogens has positioned them as valuable therapeutic targets for immunomodulation. To become competent as antibody secreting cells, B cells undergo a series of activation steps, which are triggered by the recognition of antigens frequently displayed on the surface of other presenting cells. Such antigens elicit the formation of an immune synapse (IS), where local cytoskeleton rearrangements coupled to mechanical forces and membrane trafficking orchestrate the extraction and processing of antigens in B cells. In this review, we discuss the molecular mechanisms that regulate polarized membrane trafficking and mechanical properties of the immune synapse, as well as the potential extracellular cues from the environment, which may impact the ability of B cells to sense and acquire antigens at the immune synapse. An integrated view of the diverse cellular mechanisms that shape the immune synapse will provide a better understanding on how B cells are efficiently activated.


Assuntos
Antígenos/metabolismo , Linfócitos B/metabolismo , Membrana Celular/metabolismo , Polaridade Celular , Animais , Humanos , Sinapses Imunológicas/metabolismo , Transporte Proteico
13.
Front Immunol ; 6: 251, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26074919

RESUMO

The ability of B cells to produce high-affinity antibodies and to establish immunological memory in response to a wide range of pathogenic antigens is an essential part of the adaptive immune response. The initial step that triggers a humoral immune response involves the acquisition of antigens by B cells via their surface immunoglobulin, the B cell receptor (BCR). BCR-engaged antigens are transported into specialized lysosomal compartments where proteolysis and production of MHC class II-peptide complexes occur, a process referred to as antigen processing. Expression of MHC class II complexes at the B cell surface allows them to interact with T cells and to receive their help to become fully activated. In this review, we describe how B cells rely on conserved cell polarity mechanisms to coordinate local proteolytic secretion and mechanical forces at the B cell synapse enabling them to efficiently acquire and present extracellular antigens. We foresee that the mechanisms that dictate B cell activation can be used to tune B cell responses in the context of autoimmune diseases and cancer.

14.
Mol Biol Cell ; 18(12): 4872-84, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17881725

RESUMO

The epithelial-specific adaptor AP1B sorts basolateral plasma membrane (PM) proteins in both biosynthetic and recycling routes, but the site where it carries out this function remains incompletely defined. Here, we have investigated this topic in Fischer rat thyroid (FRT) epithelial cells using an antibody against the medium subunit micro1B. This antibody was suitable for immunofluorescence and blocked the function of AP1B in these cells. The antibody blocked the basolateral recycling of two basolateral PM markers, Transferrin receptor (TfR) and LDL receptor (LDLR), in a perinuclear compartment with marker and functional characteristics of recycling endosomes (RE). Live imaging experiments demonstrated that in the presence of the antibody two newly synthesized GFP-tagged basolateral proteins (vesicular stomatitis virus G [VSVG] protein and TfR) exited the trans-Golgi network (TGN) normally but became blocked at the RE within 3-5 min. By contrast, the antibody did not block trafficking of green fluorescent protein (GFP)-LDLR from the TGN to the PM but stopped its recycling after internalization into RE in approximately 45 min. Our experiments conclusively demonstrate that 1) AP1B functions exclusively at RE; 2) TGN-to-RE transport is very fast and selective and is mediated by adaptors different from AP1B; and 3) the TGN and AP1B-containing RE cooperate in biosynthetic basolateral sorting.


Assuntos
Complexo 1 de Proteínas Adaptadoras/imunologia , Complexo 1 de Proteínas Adaptadoras/metabolismo , Anticorpos/imunologia , Endossomos/metabolismo , Animais , Linhagem Celular , Humanos , Glicoproteínas de Membrana/metabolismo , Proteína Quinase C/metabolismo , Ratos , Receptores de LDL/metabolismo , Receptores da Transferrina/metabolismo , Transdução de Sinais , Glândula Tireoide/metabolismo , Proteínas do Envelope Viral/metabolismo , Rede trans-Golgi/metabolismo
15.
Traffic ; 8(9): 1215-30, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17555532

RESUMO

Megalin is a large endocytic receptor expressed at the apical surface of several absorptive epithelia. It binds multiple ligands including apolipoproteins, vitamin and hormone carrier proteins and signaling molecules such as parathyroid hormone and the morphogen sonic hedgehog. An important characteristic of megalin is its high endocytic activity, which is mediated by tyrosine-based endocytic motifs within the receptor's cytoplasmic tail. This domain also harbors several putative consensus phosphorylation motifs for protein kinase (PK) C and casein kinase-II and one consensus motif for PKA and glycogen synthase kinase-3 (GSK3). Here we report that the cytoplasmic domain of megalin is constitutively phosphorylated depending on the integrity of a PPPSP motif, a putative GSK3 site, with a minor participation of the other phosphorylation motifs. Mutation of the serine residue within the PPPSP motif as well as blocking GSK3 activity, with two different inhibitors, significantly decreased the phosphorylation levels of the receptor. Both the megalin PPPAP mutant and the underphosphorylated wild-type receptor, by inhibition of GSK3 activity, were more expressed at the cell surface and more efficiently recycled, but they were not inhibited in their initial endocytosis rates. Altogether, these results show that the PPPSP motif and the GSK3 activity are critical to allow megalin phosphorylation and also negatively regulate the receptor's recycling.


Assuntos
Endocitose/fisiologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Receptores de Superfície Celular/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Células CHO , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Linhagem Celular , Cricetinae , Cricetulus , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Células LLC-PK1 , Cloreto de Lítio/farmacologia , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Microdomínios da Membrana/metabolismo , Dados de Sequência Molecular , Mutação , Fosforilação/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Receptores de Superfície Celular/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Suínos
16.
Traffic ; 4(4): 273-88, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12694565

RESUMO

Megalin and the low-density lipoprotein (LDL) receptor-related protein (LRP) are two large members of the LDL receptor family that bind and endocytose multiple ligands. The molecular and cellular determinants that dictate the sorting behavior of these receptors in polarized epithelial cells are largely unknown. Megalin is found apically distributed, whereas the limited information on LRP indicates its polarity. We show here that in Madin-Darby canine kidney cells, both endogenous LRP and a minireceptor containing the fourth ligand-binding, transmembrane and LRP cytosolic domains were basolaterally sorted. In contrast, minireceptors that either lacked the cytoplasmic domain or had the tyrosine in the NPTY motif mutated to alanine showed a preferential apical distribution. In LLC-PK1 cells, endogenous megalin was found exclusively in the apical membrane. Studies were also done using chimeric proteins harboring the cytosolic tail of megalin, one with the fourth ligand-binding domain of LRP and the other two containing the green fluorescent protein as the ectodomain and transmembrane domains of either megalin or LRP. Findings from these experiments showed that the cytosolic domain of megalin is sufficient for apical sorting, and that the megalin transmembrane domain promotes association with lipid rafts. In conclusion, we show that LRP and megalin both contain sorting information in their cytosolic domains that directs opposite polarity, basolateral for LRP and apical for megalin. Additionally, we show that the NPTY motif in LRP is important for basolateral sorting and the megalin transmembrane domain directs association with lipid rafts.


Assuntos
Citoplasma/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Linhagem Celular , Primers do DNA , Cães , Eletroforese em Gel de Campo Pulsado , Células Epiteliais/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA