Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 91(5): 620-3, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19306957

RESUMO

The rate of transbilayer movement (flip-flop) of cholesterol was estimated using planar bilayers with defined initial asymmetry, formed by the opposing monolayers technique. Vibrio cholerae cytolysin (VCC) was utilized as a molecular tool for measuring the cholesterol concentration in the cis leaflet of asymmetric bilayers. To quantify cholesterol flip-flop in planar lipid bilayers, a mathematical model was developed. It considers both the lateral diffusion rate of cholesterol within each monolayer and the flip-flop rate. The difference in initial and steady-state cholesterol contents in bilayer leaflets was used as a start point. Assuming the lateral diffusion coefficient to be of 1 x 10(-8) cm(2) s(-1), the characteristic time of cholesterol flip-flop at 25 +/- 2 degrees C was estimated as <10 s.


Assuntos
Colesterol/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Perforina/química , Vibrio cholerae/metabolismo , Modelos Teóricos
2.
Biochimie ; 89(3): 271-7, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17303303

RESUMO

Vibrio cholerae cytolysin (VCC) forms oligomeric transmembrane pores in cholesterol-rich membranes. To better understand this process, we used planar bilayer membranes. In symmetric membranes, the rate of the channel formation by VCC has a superlinear dependency on the cholesterol membrane fraction. Thus, more than one cholesterol molecule can facilitate VCC-pore formation. In asymmetric membranes, the rate of pore formation is limited by the leaflet with the lower cholesterol content. Methyl-beta-cyclodextrin, which removes cholesterol from membranes, rapidly inhibits VCC pore formation, even when it is added to the side opposite that of VCC addition. The results suggest that cholesterol in both membrane leaflets aid VCC-pore formation and that either leaflet can function as a kinetic bottleneck with respect to the rate of pore-formation.


Assuntos
Colesterol/química , Bicamadas Lipídicas/química , Glicoproteínas de Membrana/química , Proteínas Citotóxicas Formadoras de Poros/química , Vibrio cholerae/metabolismo , Animais , Bovinos , Perforina , beta-Ciclodextrinas/química
3.
Eur Biophys J ; 34(8): 997-1006, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16021445

RESUMO

While conformational flexibility of proteins is widely recognized as one of their functionally crucial features and enjoys proper attention for this reason, their elastic properties are rarely discussed. In ion channel studies, where the voltage-induced or ligand-induced conformational transitions, gating, are the leading topic of research, the elastic structural deformation by the applied electric field has never been addressed at all. Here we examine elasticity using a model channel of known crystal structure-Staphylococcus aureus alpha-hemolysin. Working with single channels reconstituted into planar lipid bilayers, we first show that their ionic conductance is asymmetric with voltage even at the highest salt concentration used where the static charges in the channel interior are maximally shielded. Second, choosing 18-crown-6 as a molecular probe whose size is close to the size of the narrowest part of the alpha-hemolysin pore, we analyze the blockage of the channel by the crown/K(+) complex. Analysis of the blockage within the framework of the Woodhull model in its generalized form demonstrates that the model is able to correctly describe the crown effect only if the parameters of the model are considered to be voltage-dependent. Specifically, one has to include either a voltage-dependent barrier for crown release to the cis side of the channel or voltage-dependent interactions between the binding site and the crown. We suggest that the voltage sensitivity of both the ionic conductance of the channel seen at the highest salt concentration and its blockage by the crown reflects a field-induced deformation of the pore.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/efeitos da radiação , Ativação do Canal Iônico/efeitos da radiação , Bicamadas Lipídicas/química , Bicamadas Lipídicas/efeitos da radiação , Modelos Moleculares , Fosfatidilcolinas/química , Simulação por Computador , Coronantes/química , Relação Dose-Resposta à Radiação , Elasticidade , Campos Eletromagnéticos , Proteínas Hemolisinas , Fluidez de Membrana/efeitos da radiação , Modelos Químicos , Fosfatidilcolinas/efeitos da radiação , Porosidade/efeitos da radiação , Conformação Proteica/efeitos da radiação , Doses de Radiação
4.
Biochim Biophys Acta ; 1612(2): 144-53, 2003 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-12787932

RESUMO

To probe the volume changes of the voltage-dependent anion-selective channel (VDAC), the nonelectrolyte exclusion technique was taken because it is one of the few existing methods that may define quite accurately the rough geometry of lumen of ion channels (in membranes) for which there is no structural data.Here, we corroborate the data from our previous study [FEBS Lett. 416 (1997) 187] that the gross structural features of VDAC in its highest conductance state are asymmetric with respect to the plane of the membrane, and state that this asymmetry is not dependent on sign of voltage applied. Hence, the plasticity of VDAC does not play a role in the determination of lumen geometry at this state and the asymmetry is an internal property of the channel. We also show that the apparent diameter of the cis segment of the pore decreases slightly from 2 to 1.8 nm when the channel's conductance decreases from its high to low state. However, the trans funnel segment undergoes a more marked change in polymer accessible volume. Specifically, its larger diameter decreases from approximately 4 to 2.4 nm. Supposing the channel's total length is 4.6 nm, the apparent change in channel volume during this transition is estimated to be about 10 nm(3), i.e. about 40% of the channel's volume in the high conductance state.


Assuntos
Ativação do Canal Iônico/fisiologia , Porinas/química , Porinas/metabolismo , Animais , Bovinos , Impedância Elétrica , Eletrofisiologia , Humanos , Músculo Esquelético/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Canal de Ânion 1 Dependente de Voltagem , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA