Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 1246, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39358475

RESUMO

LncRNAs are highly implicated in oxidative stress (OS) during the growth of mammalian follicles. TAK1 binding protein 2 gene (TAB2) has been suggested to involve in the normal apoptosis and proliferation of granulosa cells (GCs), the main supporting cells in ovarian follicles. In this study, we found that TAB2 increased the expressions of SOD1, P50, and P65 to suppress the OS, thereby inhibiting the apoptosis and promoting the proliferation in GCs. Notably, DNMTs appeared to mediate the expression of TAB2 without the changes of DNA methylation at TAB2's promoter. We identified an antisense lncRNA of TAB2, discovered that DNA methylation regulated the transcription of TAB2-AS in GCs, and found TAB2-AS medicated the follicular growth of ovaries in vivo. Mechanistically, the hypomethylation of the CpG site (-1759/-1760) activated the transcription of TAB2-AS, and the 1-155 nt and 156-241 nt of TAB2-AS were respectively complementary to 4368-4534 nt and 4215-4300 nt of TAB2's mRNA to increase the expression of TAB2. Moreover, TAB2-AS inhibited the OS and apoptosis of GCs, while promoted the proliferation of GCs to expedite the follicular growth, which was in line with that of TAB2. Collectively, these findings revealed the antisense lncRNA mechanism mediated by DNA methylation, and TAB2-AS might be the target to control OS during follicular growth in mammals.


Assuntos
Metilação de DNA , Estresse Oxidativo , RNA Longo não Codificante , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Feminino , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Folículo Ovariano/metabolismo , Folículo Ovariano/crescimento & desenvolvimento , Apoptose , Proliferação de Células , Células da Granulosa/metabolismo , RNA Antissenso/genética , RNA Antissenso/metabolismo
2.
Int Rev Immunol ; : 1-16, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269733

RESUMO

Inflammation induces tumor formation and plays a crucial role in tumor progression and prognosis. KCNK6, by regulating K(+) efflux to reduce NLRP3 Inflammasome-induced lung injury, relaxes the aorta. This study aims to elucidate the effects and biological mechanism of KCNK6 in inflammation-associated carcinogenesis, which may be essential for colon homeostasis and the defense system. To induce colitis, mice were given 3.0% Dextran Sodium Sulfate (DSS) in their drinking water for 7 days. The Azoxymethane (AOM) +DSS method was used to induce colon cancer in the mice model. Bone marrow-derived macrophages (BMDM) from Kcnk6-/- mice, AW264.7 cells, and human colon cancer HCT116 and Caco2 cells were used as in vitro models. The loss of Kcnk6 prevented spontaneous colitis and restored mucosal integrity and homeostatic molecules. Additionally, the loss of Kcnk6 reduced the severity of AOM/DSS-induced carcinogenesis. Kcnk6 promoted cell viability and proliferation in HCT-116 or Caco-2 cells. The loss of Kcnk6 inhibited the levels of inflammatory factors in BMDM cells. Kcnk6 accelerated potassium channel activity, inducing NLRP3 inflammasome activation. METTL3-mediated m6A modification increased Kcnk6 stability in a YTHDF2-dependent manner. Histone lactylation activated the transcription of YTHDF2/Kcnk6. Our study revealed the important role of Kcnk6 in inflammation-associated carcinogenesis progression. The m6A methyltransferase METTL3 and histone lactylation increased Kcnk6 stability in a YTHDF2-dependent manner, providing a potential strategy for inflammation-associated carcinogenesis or colorectal cancer therapy.


Our study revealed the important role of Kcnk6 senescence in inflammation associated carcinogenesis progression. The m6A methyltransferase METTL3 and histone lactylation increased Kcnk6 stability in YTHDF2- dependent manner, providing a potential strategy for inflammation associated carcinogenesis or colorectal cancer therapy.

3.
Cells ; 13(17)2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39272993

RESUMO

Ovarian aging results in reproductive disorders and infertility in mammals. Previous studies have reported that the ferroptosis and autophagy caused by oxidative stress may lead to ovarian aging, but the mechanisms remain unclear. In this study, we compared the morphological characteristics between the aged and young ovaries of pigs and found that the aged ovaries were larger in size and showed more corpora lutea. TUNEL assay further showed that the apoptosis level of granulosa cells (GCs) was relatively higher in the aged ovaries than those in young ovaries, as well as the expressions of autophagy-associated genes, e.g., p62, ATG7, ATG5, and BECN1, but that the expressions of oxidative stress and aging-associated genes, e.g., SOD1, SIRT1, and SIRT6, were significantly lower. Furthermore, the RNA-seq, Western blotting, and immunofluorescence suggested that phospholipid phosphatase 3 (PLPP3) protein was significantly upregulated in the aged ovaries. PLPP3 was likely to decrease the expressions of SIRT1 and SIRT6 to accelerate cellular senescence of porcine GCs, inhibit the expressions of SOD1, CAT, FSP1, FTH1, and SLC7A11 to exacerbate oxidative stress and ferroptosis, and arouse autophagy to retard the follicular development. In addition, two SNPs of PLPP3 promoter were significantly associated with the age at puberty. g.155798586 (T/T) and g.155798718 (C/C) notably facilitated the mRNA and protein level of PLPP3. In conclusion, PLPP3 might aggravate the oxidative stress of GCs to accelerate ovarian aging, and two molecular markers of PLPP3 were identified for ovarian aging in pigs. This work not only contributes to investigations on mechanisms for ovarian aging but also provides valuable molecular markers to postpone ovarian aging in populations.


Assuntos
Envelhecimento , Células da Granulosa , Ovário , Estresse Oxidativo , Animais , Feminino , Ovário/metabolismo , Ovário/patologia , Suínos , Envelhecimento/genética , Envelhecimento/metabolismo , Células da Granulosa/metabolismo , Autofagia/genética , Apoptose/genética , Senescência Celular/genética , Fosfatidato Fosfatase/metabolismo , Fosfatidato Fosfatase/genética
4.
Microbiol Resour Announc ; : e0034024, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248544

RESUMO

The draft genome sequence of Taiwanofungus gaoligongensis YAF008 was reported. The genome size of T. gaoligongensis YAF008 was 34.7M bp with 50.72% GC content. The genome resource will support future research into potential secondary metabolite diversity of this fungus.

5.
Microbiol Resour Announc ; 13(9): e0024024, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39162487

RESUMO

The Amyloporia genus is an important Chinese medicinal fungus. Here, we present a draft genome sequence of Amyloporia xantha strain YAFMF0618. The genome resource will support subsequent research into the potential secondary metabolite diversity of A. xantha.

6.
Microbiol Resour Announc ; 13(8): e0058824, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38967469

RESUMO

Phlebopus portentosus is a favorite ectomycorrhizal edible mushroom in tropical China. Here, we present a draft genome sequence of P. portentosus strain YAF023. The genome resource will support subsequent research into the relationship between ectomycorrhizal fungi and trees.

7.
Microbiol Resour Announc ; 13(8): e0036024, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38975956

RESUMO

Here, we report a draft genome sequence of endophytic fungus Nemania diffusa YAFEF818, isolated from Artemisia argyi. Oxford Nanopore Technologies PromethION and Illumina NovaSeq sequence reads were assembled using NECAT and polished using pilon to yield a 55.63 Mb genome.

8.
Sci Total Environ ; 947: 174660, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38986693

RESUMO

With the accumulation of plastic waste in the environment, the toxicity of micro- and nano-plastics (MNPs) to microalgae has attracted increasing attention. However, the underlying toxic mechanisms of MNPs remain to be elucidated. In this study, we synthesized micro- and nano-scale of polystyrene MNPs (PS MNPs) to investigate their toxicity and toxic mechanisms in Chlamydomonas reinhardtii. We found that PS MNPs significantly inhibit the production of photosynthetic pigments and increase soluble protein content. The detailed analysis of results shows that both materials affect photosynthetic efficiency by damaging the donor side, reaction center, and electron transfer of photosystem II. Moreover, compared to PS MPs, PS NPs have a greater negative impact on algal cells. Analyzing the transcriptome of cells suggests that the most sensitive metabolic pathways in response to PS MNPs involve oxidative phosphorylation, biosynthesis of secondary metabolites, and photosynthesis. Especially, genes related to photosynthesis and oxidative phosphorylation showed significant changes in expression after exposure to PS MNPs. This study provided molecular-level insights into the toxic mechanisms of PS MNPs on microalgae.


Assuntos
Chlamydomonas reinhardtii , Fotossíntese , Poliestirenos , Transcriptoma , Chlamydomonas reinhardtii/efeitos dos fármacos , Chlamydomonas reinhardtii/metabolismo , Poliestirenos/toxicidade , Transcriptoma/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Perfilação da Expressão Gênica , Plásticos/toxicidade , Nanopartículas/toxicidade , Microalgas/efeitos dos fármacos
9.
Int J Mol Sci ; 25(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38891877

RESUMO

The domestic pig (Sus scrofa) and its subfamilies have experienced long-term and extensive gene flow, particularly in Southeast Asia. Here, we analyzed 236 pigs, focusing on Yunnan indigenous, European commercial, East Asian, and Southeast Asian breeds, using the Pig Genomics Reference Panel (PGRP v1) of Pig Genotype-Tissue Expression (PigGTEx) to investigate gene flow and associated complex traits by integrating multiple database resources. In this study, we discovered evidence of admixtures from European pigs into the genome of Yunnan indigenous pigs. Additionally, we hypothesized that a potential conceptual gene flow route that may have contributed to the genetic composition of the Diannan small-ear pig is a gene exchange from the Vietnamese pig. Based on the most stringent gene introgression scan using the fd statistic, we identified three specific loci on chromosome 8, ranging from 51.65 to 52.45 Mb, which exhibited strong signatures of selection and harbored the NAF1, NPY1R, and NPY5R genes. These genes are associated with complex traits, such as fat mass, immunity, and litter weight, in pigs, as supported by multiple bio-functionalization databases. We utilized multiple databases to explore the potential dynamics of genetic exchange in Southeast Asian pig populations and elucidated specific gene functionalities.


Assuntos
Fluxo Gênico , Animais , Sudeste Asiático , Cruzamento , Bases de Dados Genéticas , Genética Populacional , Genótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Sus scrofa/genética , Suínos/genética
10.
Animal Model Exp Med ; 7(4): 408-418, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38807299

RESUMO

BACKGROUND: Myocardial infarction (MI) is an acute condition in which the heart muscle dies due to the lack of blood supply. Previous research has suggested that autophagy and angiogenesis play vital roles in the prevention of heart failure after MI, and miR-106a is considered to be an important regulatory factor in MI. But the specific mechanism remains unknown. In this study, using cultured venous endothelial cells and a rat model of MI, we aimed to identify the potential target genes of miR-106a and discover the mechanisms of inhibiting autophagy and angiogenesis. METHODS: We first explored the biological functions of miR-106a on autophagy and angiogenesis on endothelial cells. Then we identified ATG7, which was the downstream target gene of miR-106a. The expression of miR-106a and ATG7 was investigated in the rat model of MI. RESULTS: We found that miR-106a inhibits the proliferation, cell cycle, autophagy and angiogenesis, but promoted the apoptosis of vein endothelial cells. Moreover, ATG7 was identified as the target of miR-106a, and ATG7 rescued the inhibition of autophagy and angiogenesis by miR-106a. The expression of miR-106a in the rat model of MI was decreased but the expression of ATG7 was increased in the infarction areas. CONCLUSION: Our results indicate that miR-106a may inhibit autophagy and angiogenesis by targeting ATG7. This mechanism may be a potential therapeutic treatment for MI.


Assuntos
Proteína 7 Relacionada à Autofagia , Autofagia , MicroRNAs , Infarto do Miocárdio , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Ratos , Masculino , Neovascularização Fisiológica , Ratos Sprague-Dawley , Humanos , Células Endoteliais da Veia Umbilical Humana , Proliferação de Células , Células Endoteliais/metabolismo , Apoptose , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Modelos Animais de Doenças , Células Cultivadas , Angiogênese
11.
Int J Mol Sci ; 25(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38791340

RESUMO

The CCT gene family is present in plants and is involved in biological processes such as flowering, circadian rhythm regulation, plant growth and development, and stress resistance. We identified 87, 62, 46, and 40 CCTs at the whole-genome level in B. napus, B. rapa, B. oleracea, and A. thaliana, respectively. The CCTs can be classified into five groups based on evolutionary relationships, and each of these groups can be further subdivided into three subfamilies (COL, CMF, and PRR) based on function. Our analysis of chromosome localization, gene structure, collinearity, cis-acting elements, and expression patterns in B. napus revealed that the distribution of the 87 BnaCCTs on the chromosomes of B. napus was uneven. Analysis of gene structure and conserved motifs revealed that, with the exception of a few genes that may have lost structural domains, the majority of genes within the same group exhibited similar structures and conserved domains. The gene collinearity analysis identified 72 orthologous genes, indicating gene duplication and expansion during the evolution of BnaCCTs. Analysis of cis-acting elements identified several elements related to abiotic and biotic stress, plant hormone response, and plant growth and development in the promoter regions of BnaCCTs. Expression pattern and protein interaction network analysis showed that BnaCCTs are differentially expressed in various tissues and under stress conditions. The PRR subfamily genes have the highest number of interacting proteins, indicating their significant role in the growth, development, and response to abiotic stress of B. napus.


Assuntos
Brassica napus , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Filogenia , Proteínas de Plantas , Brassica napus/genética , Brassica napus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cromossomos de Plantas/genética , Estresse Fisiológico/genética , Evolução Molecular , Mapeamento Cromossômico
12.
Ecotoxicol Environ Saf ; 277: 116358, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38653025

RESUMO

Exposure to nicotine by cigarette smoking have shown strongly defectives on the physiological function of ovaries, which in turn leads to disorders of fertility in women. However, the potential molecular mechanisms remain to be elucidated. In this study, we notably found that nicotine was likely to specifically raise the expression of histone deacetylase 3 (HDAC3) to promote the apoptosis and autophagy of granulosa cells (GCs) and block follicular maturation. Moreover, prostaglandin E2 (PGE2) inhibited the apoptosis of GCs and facilitated follicular maturation, and nicotine appeared to inhibit PGE2 secretion by freezing the expression of cyclooxygenase 1 (COX1), which was the rate-limiting and essential enzyme for PGE2 synthesis. Epigenetically, the nicotine was observed to diminish the histone H3 lysine 9 acetylation (H3K9ac) level and compact the chromatin accessibility in -1776/-1499 bp region of COX1 by evoking the expression of HDAC3, with the deactivated Cas9-HDAC3/sgRNA system. Mechanistically, the COX1 protein was found to pick up and degrade the autophagy related protein beclin 1 (BECN1) to control the autophagy of GCs. These results provided a potential new molecular therapy to recover the damage of female fertility induced by nicotine from cigarette smoking.


Assuntos
Autofagia , Dinoprostona , Células da Granulosa , Nicotina , Feminino , Autofagia/efeitos dos fármacos , Animais , Nicotina/toxicidade , Células da Granulosa/efeitos dos fármacos , Dinoprostona/metabolismo , Camundongos , Histona Desacetilases/metabolismo , Folículo Ovariano/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 1/genética
13.
Heliyon ; 10(5): e27223, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38455575

RESUMO

Paclitaxel is a potent anti-cancer drug that is mainly produced through semi-synthesis, which still requires plant materials as precursors. The content of paclitaxel and 10-deacetyl baccatin III (10-DAB) in Taxus yunnanensis has been found to differ from that of other Taxus species, but there is little research on the mechanism underlying the variation in paclitaxel content in T. yunnanensis of different provenances. In this experiment, the contents of taxoids and precursors in twigs between a high paclitaxel-yielding individual (TG) and a low paclitaxel-yielding individual (TD) of T. yunnanensis were compared, and comparative analyses of transcriptomes as well as chloroplast genomes were performed. High-performance liquid chromatography (HPLC) detection showed that 10-DAB and baccatin III contents in TG were 18 and 47 times those in TD, respectively. Transcriptomic analysis results indicated that genes encoding key enzymes in the paclitaxel biosynthesis pathway, such as taxane 10-ß-hydroxylase (T10ßH), 10-deacetylbaccatin III 10-O-acetyltransferase (DBAT), and debenzoyl paclitaxel N-benzoyl transferase (DBTNBT), exhibited higher expression levels in TG. Additionally, qRT-PCR showed that the relative expression level of T10ßH and DBAT in TG were 29 and 13 times those in TD, respectively. In addition, six putative transcription factors were identified that may be involved in paclitaxel biosynthesis from transcriptome data. Comparative analysis of plastid genomes showed that the TD chloroplast contained a duplicate of rps12, leading to a longer plastid genome length in TD relative to TG. Fifteen mutation hotspot regions were identified between the two plastid genomes that can serve as candidate DNA barcodes for identifying high-paclitaxel-yield individuals. This experiment provides insight into the difference in paclitaxel accumulation among different provenances of T. yunnanensis individuals.

14.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473715

RESUMO

In female mammals, the proliferation and apoptosis of granulosa cells (GCs) have been shown to determine the fate of follicles. DNA methyltransferases (DNMTs) and SLCO3A1 have been reported to be involved in the survival of GCs and follicular growth. However, the molecular mechanisms enabling DNMTs to regulate the expression of SLCO3A1 to participate in follicular growth are unclear. In this study, we found that the knockdown of DNMT1 enhanced the mRNA and protein levels of SLCO3A1 by regulating the chromatin accessibility probably. Moreover, SLCO3A1 upregulated the mRNA and protein levels of MCL1, PCNA, and STAR to promote the proliferation of GCs and facilitated cell cycle progression by increasing the mRNA and protein levels of CCNE1, CDK2, and CCND1, but it decreased apoptosis by downregulating the mRNA and protein levels of CASP3 and CASP8. Moreover, SLCO3A1 promoted the growth of porcine follicles and development of mice follicles. In conclusion, the knockdown of DNMT1 upregulated the mRNA and protein levels of SLCO3A1, thereby promoting the proliferation of GCs to facilitate the growth and development of ovarian follicles, and these results provide new insights into investigations of female reproductive diseases.


Assuntos
Células da Granulosa , Folículo Ovariano , Camundongos , Feminino , Suínos , Animais , Células da Granulosa/metabolismo , Folículo Ovariano/metabolismo , Proliferação de Células/genética , Mamíferos/genética , RNA Mensageiro/genética
15.
Sci Data ; 11(1): 157, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302497

RESUMO

Enhancers and the enhancer RNAs (eRNAs) have been strongly implicated in regulations of transcriptions. Based the multi-omics data (ATAC-seq, ChIP-seq and RNA-seq) from public databases, Pig-eRNAdb is a dataset that comprehensively integrates enhancers and eRNAs for pigs using the machine learning strategy, which incorporates 82,399 enhancers and 37,803 eRNAs from 607 samples across 15 tissues of pigs. This user-friendly dataset covers a comprehensive depth of enhancers and eRNAs annotation for pigs. The coordinates of enhancers and the expression patterns of eRNAs are downloadable. Besides, thousands of regulators on eRNAs, the target genes of eRNAs, the tissue-specific eRNAs, and the housekeeping eRNAs are also accessible as well as the sequence similarity of eRNAs with humans. Moreover, the tissue-specific eRNA-trait associations encompass 652 traits are also provided. It will crucially facilitate investigations on enhancers and eRNAs with Pig-eRNAdb as a reference dataset in pigs.


Assuntos
Elementos Facilitadores Genéticos , Transcrição Gênica , Animais , Regiões Promotoras Genéticas , RNA/genética , Suínos
16.
Microbiol Resour Announc ; 13(1): e0090723, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38051074

RESUMO

Here, we report a draft genome sequence of endophytic fungus Phoma sp. strain YAFEF320, isolated from the roots of Gerbera jamesonii. The genome size of Phoma sp. YAFEF320 was 32,542,820 bp with 52.08% GC content. The genome resource will support future research into potential secondary metabolite diversity of this fungus.

17.
Microbiol Resour Announc ; 13(1): e0082923, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38051076

RESUMO

Here, we report a draft genome sequence of endophytic fungus Talaromyces purpureogenus strain YAFEF302, isolated from Juglans sigillata. The genome resource will support future research into potential secondary metabolite diversity of this fungus.

18.
Braz J Microbiol ; 55(1): 87-100, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38099978

RESUMO

Sanghuangporus sanghuang is a medicinal macrofungus with antioxidant and antitumor activities, and it is enriched with secondary metabolites such as polysaccharides, terpenes, polyphenols, and styrylpyrone compounds. To explore the putative core genes and gene clusters involved in sanghuang biosynthesis, we sequenced and assembled a 40.5-Mb genome of S. sanghuang (SH1 strain). Using antiSMASH, local BLAST, and NCBI comparison, 12 terpene synthases (TPSs), 1 non-ribosomal peptide synthase, and five polyketide synthases (PKSs) were identified in SH1. Combining the transcriptome analysis with liquid chromatography mass spectrometry-ion trap-time of flight analysis, we determined that ShPKS1, one phenylalanine aminolyase (ShPAL), and one P450 monooxygenase (ShC4H1) were associated with hispidin biosynthesis. Structural domain comparison indicated that ShPKS2 and ShPKS3 are involved in the biosynthesis of orsellinic acid and 2-hydroxy-6-methylbenzoic acid, respectively. Furthermore, comparative genomic analysis of SH1 with 14 other fungi from the Hymenochaetaceae family showed variation in the number of TPSs among different genomes, with Coniferiporia weirii exhibiting only 9 TPSs and Inonotus obliquus having 20. The number of TPSs also differed among the genomes of three strains of S. sanghuang, namely Kangneng (16), MS2 (9), and SH1 (12). The type and number of PKSs also varied among species and even strains, ranging from two PKSs in Pyrrhoderma noxium to five PKSs in S. sanghuang SH1. Among the three strains of S. sanghuang, both the structural domains and the number of PKSs in strains MS2 and SH1 were consistent, whereas strain Kangneng exhibited only four PKSs and lacked the PKS with the structural domain KS-AT-DH-KR-ACP. Additionally, Sanghuangporus species exhibited more similar PKSs to Inonotus, with higher gene similarity around five PKSs, while showing differences from those of other fungi in the same family, including Phellinus lamaoensis. This result supports the independent taxonomic significance of the genus Sanghuangporus to some extent.


Assuntos
Basidiomycota , Fungos , Policetídeo Sintases , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Fungos/metabolismo , Antioxidantes , Genômica
19.
Cells ; 12(23)2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067162

RESUMO

Abnormal sexual maturity exhibits significant detrimental effects on adult health outcomes, and previous studies have indicated that targeting histone acetylation might serve as a potential therapeutic approach to regulate sexual maturity. However, the mechanisms that account for it remain to be further elucidated. Using the mouse model, we showed that Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, downregulated the protein level of Hdac1 in ovaries to promote the apoptosis of granulosa cells (GCs), and thus arrested follicular development and delayed sexual maturity. Using porcine GCs as a cell model, a novel sexual maturity-associated lncRNA, which was named as the stimulatory factor of follicular development (SFFD), transcribed from mitochondrion and mediated by HDAC1, was identified using RNA sequencing. Mechanistically, HDAC1 knockdown significantly reduced the H3K27ac level at the -953/-661 region of SFFD to epigenetically inhibit its transcription. SFFD knockdown released miR-202-3p to reduce the expression of cyclooxygenase 1 (COX1), an essential rate-limited enzyme involved in prostaglandin synthesis. This reduction inhibited the proliferation and secretion of 17ß-estradiol (E2) while promoting the apoptosis of GCs. Consequently, follicular development was arrested and sexual maturity was delayed. Taken together, HDAC1 knockdown-mediated SFFD downregulation promoted the apoptosis of GCs through the miR-202-3p-COX1 axis and lead to delayed sexual maturity. Our findings reveal a novel regulatory network modulated by HDAC1, and HDAC1-mediated SFFD may be a promising new therapeutic target to treat delayed sexual maturity.


Assuntos
MicroRNAs , RNA Longo não Codificante , Maturidade Sexual , Animais , Feminino , Camundongos , Apoptose/genética , Proliferação de Células , Ciclo-Oxigenase 1/metabolismo , Células da Granulosa/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Suínos , Histona Desacetilase 1/antagonistas & inibidores , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Ácidos Hidroxâmicos/farmacologia
20.
Animals (Basel) ; 13(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38136785

RESUMO

Preselected variants associated with the trait of interest from genome-wide association studies (GWASs) are available to improve genomic prediction in pigs. The objectives of this study were to use preselected variants from a large GWAS meta-analysis to assess the impact of single-nucleotide polymorphism (SNP) preselection strategies on genome prediction of growth and carcass traits in pigs. We genotyped 1018 Large White pigs using medium (50k) SNP arrays and then imputed SNPs to sequence level by utilizing a reference panel of 1602 whole-genome sequencing samples. We tested the effects of different proportions of selected top SNPs across different SNP preselection strategies on genomic prediction. Finally, we compared the prediction accuracies by employing genomic best linear unbiased prediction (GBLUP), genomic feature BLUP and three weighted GBLUP models. SNP preselection strategies showed an average improvement in accuracy ranging from 0.3 to 2% in comparison to the SNP chip data. The accuracy of genomic prediction exhibited a pattern of initial increase followed by decrease, or continuous decrease across various SNP preselection strategies, as the proportion of selected top SNPs increased. The highest level of prediction accuracy was observed when utilizing 1 or 5% of top SNPs. Compared with the GBLUP model, the utilization of estimated marker effects from a GWAS meta-analysis as SNP weights in the BLUP|GA model improved the accuracy of genomic prediction in different SNP preselection strategies. The new SNP preselection strategies gained from this study bring opportunities for genomic prediction in limited-size populations in pigs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA