Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Mar Pollut Bull ; 185(Pt A): 114219, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36335689

RESUMO

Vibrio alginolyticus has been the second most common Vibrio species in the world and mainly grows in the ocean or estuary environment, which can induce epidemics outbreaks under marine organisms, and causing serious economic losses in aquaculture industry. In this study, the genetic populations and evolutionary relationship analysis of V. alginolyticus isolated from different geographical locations in China with typical interannual differences were exhibited originally genetic diversity. Then the virulence genes prevalence, antibiotic resistance phenotype, and antimicrobial resistance genes risk diversity of V. alginolyticus were analyzed by phenotypic and molecular typing methods. And they were complex correlations among antibiotic phenotypes, resistance and virulence genes under different genotype of V. alginolyticus. The results provide a theoretical foundation for further understanding the genetic and metabolic diversity among V. alginolyticus in China, and lay a theoretical foundation for the transmission risk assessment and regional diagnosis of Vibrio in aquatic animals.


Assuntos
Antibacterianos , Vibrio alginolyticus , Animais , Vibrio alginolyticus/genética , Virulência/genética , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia , Aquicultura , China
2.
Electron. j. biotechnol ; Electron. j. biotechnol;44: 1-5, Mar. 2020. graf, tab
Artigo em Inglês | LILACS | ID: biblio-1087706

RESUMO

Background: Freeze-drying is known as one of the best methods to preserve bacterial strains. Protectant is the key factor affecting the survival rate of freeze-dried strains. In addition, salinity, bacterial suspension concentration, drying time, and other factors can also affect the survival rate of strains to varying degrees. At present, there are relatively few studies on freeze-drying preservation of marine bacteria. In the present study, we performed the freeze-drying protectant screening and optimized the preservation conditions for Pseudoalteromonas nigrifaciens, which is widely distributed in marine environment. The protective effects of the screened protectants were verified by 18 other marine bacterial strains. Results: The results indicated that the combination of 5.0% (w/v) lactose, 5.0% (w/v) mannitol, 5.0% (w/v) trehalose, 10.0% (w/v) skim milk powder, 0.5% (w/v) ascorbic acid and 0.5% (w/v) gelatin was the best choice for the preservation of P. nigrifaciens. The suggested salinity and concentration of initial cell suspension were 10 g/L NaCl and 1.0 × 109 CFU/mL, respectively. Furthermore, stationary-phase cells were the best choice for the freeze-drying process. The highest survival rate of P. nigrifaciens reached 52.8% when using 5­10% (w/v) skim milk as rehydration medium. Moreover, the other 18 marine strains belonging to Pseudoalteromonas, Vibrio, Photobacterium, Planomicrobium, Edwardsiella, Enterococcus, Bacillus, and Saccharomyces were freezedried under the abovementioned conditions. Their survival rates were 2.3­95.1%. Conclusion: Collectively, our results supported that the protectant mixture and parameters were beneficial for lyophilization of marine bacteria


Assuntos
Preservação Biológica/métodos , Pseudoalteromonas/fisiologia , Liofilização/métodos , Trealose/química , Sobrevivência Celular , Fenômenos Fisiológicos Bacterianos , Dissacarídeos/química , Viabilidade Microbiana , Salinidade , Lactose/química , Manitol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA