Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Spine (Phila Pa 1976) ; 48(16): 1174-1180, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37235799

RESUMO

STUDY DESIGN: A laboratory study comparing polyether ether ketone (PEEK)-zeolite and PEEK spinal implants in an ovine model. OBJECTIVE: This study challenges a conventional spinal implant material, PEEK, to PEEK-zeolite using a nonplated cervical ovine model. SUMMARY OF BACKGROUND DATA: Although widely used for spinal implants due to its material properties, PEEK is hydrophobic, resulting in poor osseointegration, and elicits a mild nonspecific foreign body response. Zeolites are negatively charged aluminosilicate materials that are hypothesized to reduce this pro-inflammatory response when used as a compounding material with PEEK. MATERIALS AND METHODS: Fourteen skeletally mature sheep were, each, implanted with one PEEK-zeolite interbody device and one PEEK interbody device. Both devices were packed with autograft and allograft material and randomly assigned to one of 2 cervical disc levels. The study involved 2 survival time points (12 and 26 weeks) and biomechanical, radiographic, and immunologic endpoints. One sheep expired from complications not related to the device or procedure. A biomechanical evaluation was based on measures of segmental flexibility, using 6 degrees of freedom pneumatic spine tester. Radiographic evaluation was performed using microcomputed tomography scans in a blinded manner by 3 physicians. Levels of the pro-inflammatory cytokines, interleukin (IL)-1ß, IL-6, and tumor necrosis factor-alpha at the implant, were quantified using immunohistochemistry. RESULTS: PEEK-zeolite and PEEK exhibited an equivalent range of motion in flexion extension, lateral bending, and axial torsion. A motion was significantly reduced for implanted devices at both time points as compared with native segments. Radiographic assessments of fusion and bone formation were similar for both devices. PEEK-zeolite exhibited lower levels of IL-1ß ( P = 0.0003) and IL-6 ( P = 0.03). CONCLUSION: PEEK-zeolite interbody fusion devices provide initial fixation substantially equivalent to PEEK implants but exhibit a reduced pro-inflammatory response. PEEK-zeolite devices may reduce the chronic inflammation and fibrosis previously observed with PEEK devices.


Assuntos
Fusão Vertebral , Zeolitas , Animais , Ovinos , Microtomografia por Raio-X/métodos , Interleucina-6 , Polietilenoglicóis/química , Cetonas/química , Éteres , Fusão Vertebral/métodos , Fenômenos Biomecânicos
2.
Arterioscler Thromb Vasc Biol ; 39(10): 2157-2167, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31462093

RESUMO

OBJECTIVE: Although the clinical and biological importance of calcification is well recognized for the extracerebral vasculature, its role in cerebral vascular disease, particularly, intracranial aneurysms (IAs), remains poorly understood. Extracerebrally, 2 distinct mechanisms drive calcification, a nonatherosclerotic, rapid mineralization in the media and a slower, inflammation driven, atherosclerotic mechanism in the intima. This study aims to determine the prevalence, distribution, and type (atherosclerotic, nonatherosclerotic) of calcification in IAs and assess differences in occurrence between ruptured and unruptured IAs. Approach and Results: Sixty-five 65 IA specimens (48 unruptured, 17 ruptured) were resected perioperatively. Calcification and lipid pools were analyzed nondestructively in intact samples using high resolution (0.35 µm) microcomputed tomography. Calcification is highly prevalent (78%) appearing as micro (<500 µm), meso (500 µm-1 mm), and macro (>1 mm) calcifications. Calcification manifests in IAs as both nonatherosclerotic (calcification distinct from lipid pools) and atherosclerotic (calcification in the presence of lipid pools) with 3 wall types: Type I-only calcification, no lipid pools (20/51, 39%), Type II-calcification and lipid pools, not colocalized (19/51, 37%), Type III-calcification colocalized with lipid pools (12/51, 24%). Ruptured IAs either had no calcifications or had nonatherosclerotic micro- or meso-calcifications (Type I or II), without macro-calcifications. CONCLUSIONS: Calcification in IAs is substantially more prevalent than previously reported and presents as both nonatherosclerotic and atherosclerotic types. Notably, ruptured aneurysms had only nonatherosclerotic calcification, had significantly lower calcification fraction, and did not contain macrocalcifications. Improved understanding of the role of calcification in IA pathology should lead to new therapeutic targets.


Assuntos
Aneurisma Roto/patologia , Aterosclerose/patologia , Calcinose/patologia , Processamento de Imagem Assistida por Computador/métodos , Aneurisma Intracraniano/patologia , Microtomografia por Raio-X/métodos , Idoso , Análise de Variância , Aterosclerose/diagnóstico por imagem , Calcinose/diagnóstico por imagem , Calcinose/epidemiologia , Humanos , Aneurisma Intracraniano/cirurgia , Pessoa de Meia-Idade , Prevalência , Medição de Risco , Estudos de Amostragem , Índice de Gravidade de Doença , Estatísticas não Paramétricas , Coleta de Tecidos e Órgãos
3.
Clin Spine Surg ; 29(7): E325-30, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-23059703

RESUMO

STUDY DESIGN: A comparative biomechanical human cadaveric spine study of a dynamic fusion rod and a traditional titanium rod. OBJECTIVE: The purpose of this study was to measure and compare the biomechanical metrics associated with a dynamic fusion device, Isobar TTL Evolution, and a rigid rod. SUMMARY OF BACKGROUND DATA: Dynamic fusion rods may enhance arthrodesis compared with a rigid rod. Wolff's law implies that bone remodeling and growth may be enhanced through anterior column loading (AL). This is important for dynamic fusion rods because their purpose is to increase AL. METHODS: Six fresh-frozen lumbar cadaveric specimens were used. Each untreated specimen (Intact) underwent biomechanical testing. Next, each specimen had a unilateral transforaminal lumbar interbody fusion performed at L3-L4 using a cage with an integrated load cell. Pedicle screws were also placed at this time. Subsequently, the Isobar was implanted and tested, and finally, a rigid rod replaced the Isobar in the same pedicle screw arrangement. RESULTS: In terms of range of motion, the Isobar performed comparably to the rigid rod and there was no statistical difference found between Isobar and rigid rod. There was a significant difference between the intact and rigid rod and also between intact and Isobar conditions in flexion extension. For interpedicular displacement, there was a significant increase in flexion extension (P=0.017) for the Isobar compared with the rigid rod. Isobar showed increased AL under axial compression compared with the rigid rod (P=0.024). CONCLUSIONS: Isobar provided comparable stabilization to a rigid rod when using range of motion as the metric, however, AL was increased because of the greater interpedicular displacement of dynamic rod compared with a rigid rod. By increasing interpedicular displacement and AL, it potentially brings clinical benefit to procedures relying on arthrodesis.


Assuntos
Vértebras Lombares/fisiologia , Parafusos Pediculares , Amplitude de Movimento Articular/fisiologia , Fusão Vertebral/instrumentação , Fusão Vertebral/métodos , Fenômenos Biomecânicos , Cadáver , Humanos , Fixadores Internos , Região Lombossacral , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA