Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 255: 112919, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677261

RESUMO

Endolysosomes perform a wide range of cellular functions, including nutrient sensing, macromolecule digestion and recycling, as well as plasma membrane repair. Because of their high activity in cancerous cells, endolysosomes are attractive targets for the development of novel cancer treatments. Light-activated compounds termed photosensitizers (PS) can catalyze the oxidation of specific biomolecules and intracellular organelles. To selectively damage endosomes and lysosomes, HT-29 colorectal cancer cells were incubated with nanomolar concentrations of meso-tetraphenylporphine disulfonate (TPPS2a), an amphiphilic PS taken up via endocytosis and activated by green light (522 nm, 2.1 J.cm-1). Several cellular responses were characterized by a combination of immunofluorescence and immunoblotting assays. We showed that TPPS2a photosensitization blocked autophagic flux without extensive endolysosomal membrane rupture. Nevertheless, there was a severe functional failure of endolysosomes due to a decrease in CTSD (cathepsin D, 55%) and CTSB (cathepsin B, 52%) maturation. PSAP (prosaposin) processing (into saposins) was also considerably impaired, a fact that could be detrimental to glycosphingolipid homeostasis. Therefore, photosensitization of HT-29 cells previously incubated with a low concentration of TPPS2a promotes endolysosomal dysfunction, an effect that can be used to improve cancer therapies.


Assuntos
Autofagia , Lisossomos , Fármacos Fotossensibilizantes , Humanos , Células HT29 , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/efeitos da radiação , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Endossomos/metabolismo , Endossomos/efeitos dos fármacos , Catepsinas/metabolismo , Catepsinas/antagonistas & inibidores , Luz , Porfirinas/farmacologia , Porfirinas/química , Catepsina D/metabolismo , Catepsina B/metabolismo
2.
iScience ; 25(4): 104093, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35372811

RESUMO

The effects of UV light on the skin have been extensively investigated. However, systematic information about how the exposure to ultraviolet-A (UVA) light, the least energetic but the most abundant UV radiation reaching the Earth, shapes the subcellular organization of proteins is lacking. Using subcellular fractionation, mass-spectrometry-based proteomics, machine learning algorithms, immunofluorescence, and functional assays, we mapped the subcellular reorganization of the proteome of human keratinocytes in response to UVA light. Our workflow quantified and assigned subcellular localization for over 1,600 proteins, of which about 200 were found to redistribute upon UVA exposure. Reorganization of the proteome affected modulators of signaling pathways, cellular metabolism, and DNA damage response. Strikingly, mitochondria were identified as one of the main targets of UVA-induced stress. Further investigation demonstrated that UVA induces mitochondrial fragmentation, up-regulates redox-responsive proteins, and attenuates respiratory rates. These observations emphasize the role of this radiation as a potent metabolic stressor in the skin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA