Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.575
Filtrar
1.
Small ; : e2407078, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39350452

RESUMO

Bacterial biofilm formation is closely associated with persistent infections of medical implants, which can lead to implantation failure. Additionally, the reconstruction of the vascular network is crucial for achieving efficient osseointegration. Herein, an anti-biofilm nanoplatform based on L-arginine (LA)/new indocyanine green (NICG) that is anchored to strontim titanium oxide (SrTiO3) nano-arrays on a titanium (Ti) substrate by introducing polydopamine (PDA) serving as the interlayer is designed and successfully fabricated. Near-infrared light (NIR) is used to excite NICG, generating reactive oxygen species (ROS) that react with LA to release nitric oxide (NO) molecules. Utilizing the concentration-dependent effect of NO, high power density NIR irradiation applied during the early stage after implantation to release a high concentration of NO, which synergized with the photothermal effect of PDA to eliminate bacterial biofilm. Subsequently, the irradiation power density can be finely down-regulated to reduce the NO concentration in subsequent treatment for accelerating the reconstruction of blood vessels. Meanwhile, SrTiO3 nano-arrays improve the hydrophilicity of the implant surface and slowly release strontium (Sr) ions for continuously optimizing the osteogenic microenvironment. Effective biofilm elimination and revascularization alongside the continuous optimization of the osteogenic microenvironment can significantly enhance the osseointegration of the functionalized Ti implant in in vivo animal experiments.

2.
Org Biomol Chem ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258411

RESUMO

Developing selective and sensitive fluorescent probes for the detection of glutathione (GSH) concentration and intracellular distribution is of great significance for early diagnosis and treatment of diseases such as liver injury and cancer since GSH plays irreplaceable roles in regulating intracellular redox homeostasis. Herein, we present a new fluorescent probe that can be specifically activated by GSH through the conjugate addition and hydrolysis induced covalent-assembly approach for achieving zero-background interference fluorescence off-on sensing. Besides, the probe exhibited prominent selectivity and sensitivity, a low detection limit and cytotoxicity, thus successfully realizing specific real-time monitoring and tracking of GSH levels in living cells. As a consequence, this work might provide a potentially promising candidate for validating the function of GSH in various physiological and pathological processes, which is beneficial for early diagnosis and therapeutics of related diseases.

3.
J Transl Med ; 22(1): 829, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252063

RESUMO

BACKGROUND: CT-detected Extramural venous invasion (EMVI) is known as an independent risk factor for distant metastasis in patients with advanced gastric cancer (GC). However, the molecular basis is not clear. In colorectal cancer, M2 macrophages plays a vital role in determining EMVI. This study aimed to investigate the relationship between CT-detected EMVI and the M2 macrophages as well as prognosis predictionusing a radiogenomic approach. METHOD: We utilized EMVI-related genes (from mRNA sequencing of 13 GC samples correlated with EMVI score by spearman analysis, P < 0.01) to overlap the co-expression genes of WGCNA module and M2 macrophages related genes (from mRNA data of 371 GC patients in TCGA database), generating a total of 136 genes. An EMVI-M2-prognosis-related hub gene signature was constructed by COX and least absolute shrinkage and selection operator (LASSO) analysis from a training cohort TCGA database (n = 371) and validated it in a validation cohort from GEO database (n = 357). High- and low-risk groups were divided by hub gene (EGFLAM and GNG11) signature-derived risk scores. We assessed its predictive ability through Kaplan-Meier (K-M) curve and COX analysis. Furthermore, we utilized ESTIMATE to detect tumor mutation burden (TMB) and evaluate sensitivity to immune checkpoint inhibitors (ICIs). Expression of hub genes was tested using western blotting and immunohistochemistry (IHC) analysis. RESULTS: The overall survival (OS) was significantly reduced in the high-risk group (Training/Validation: AUC = 0.701/0.620; P < 0.001/0.003). Furthermore, the risk score was identified as an independent predictor of OS in multivariate COX regression analyses (Training/Validation: HR = 1.909/1.928; 95% CI: 1.225-2.974/1.308-2.844). The low-risk group exhibited significantly higher TMB levels (P = 1.6e- 07) and greater sensitivity to ICIs. Significant higher expression of hub-genes was identified on multiple GC cell lines and original samples. Hub-genes knockdown in gastric cancer cell lines inhibited their proliferation, metastatic and invasive capacity to varying degrees. In vivo experiments indicate that EGFLAM, as one of the hub genes, its high expression can serve as a biomarker for low response to immunotherapy. CONCLUSION: Our study demonstrated EMVI-M2 gene signature could effectively predict the prognosis of GC tissue, reflecting the relationship between EMVI and M2 macrophages.


Assuntos
Regulação Neoplásica da Expressão Gênica , Macrófagos , Invasividade Neoplásica , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Feminino , Prognóstico , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X , Estimativa de Kaplan-Meier , Análise de Sobrevida , Transcriptoma/genética , Animais , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Reprodutibilidade dos Testes , Idoso
4.
Heliyon ; 10(16): e35905, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39253195

RESUMO

Background: Secreted frizzled-related protein 5 (SFRP5) is a novel adipokine that has been found to be closely associated with metabolic and cardiovascular diseases. We investigated serum SFRP5 levels during the acute phase and their predictive value for the prognosis of acute aortic dissection (AAD). Methods: In total, 152 AAD patients and 164 controls were enrolled in this study. Serum SFRP5 levels were measured using an enzyme-linked immunosorbent assay (ELISA). AAD patients were divided into high-SFRP5 and low-SFRP5 groups based on the optimal cutoff value and followed up for prognosis. The primary endpoint was all-cause mortality, and the secondary endpoint focused on AAD-related events (including AAD-related mortality and unplanned reoperations). Results: Serum SFRP5 levels were significantly higher in AAD patients than in non-AAD controls, regardless of whether they had Stanford type A or B AD. Multivariate logistic regression analysis revealed an independent association between SFRP5 and the presence of AAD (adjusted OR 1.267, 95 % CI 1.152-1.394; p < 0.001). The receiver operating characteristic curve demonstrated that the optimal cutoff value for SFRP5 to predict the presence of AAD was 10.26 ng/mL (AUC 0.7241, sensitivity 49.34 %, specificity 87.20 %). Notably, serum SFRP5 levels of patients in the death group were significantly higher than those in the survival group. Compared with patients in the low-SFRP5 group, those in the high-SFRP5 group exhibited a significantly increased risk of all-cause mortality (HR 9.540, 95 % CI 2.803-32.473; p < 0.001) and AAD-related events (HR 6.915, 95 % CI 2.361-20.254; p < 0.001) during the follow-up period. Conclusion: Serum SFRP5 levels were significantly elevated in the acute phase of AAD, and high serum SFRP5 levels were independently associated with poor AAD prognosis. These results suggest that serum SFRP5 level during the acute phase may be an effective biomarker and therapeutic target for the prognosis of AAD.

5.
J Biol Chem ; : 107760, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39260698

RESUMO

The generation of an active [FeFe]-hydrogenase requires the synthesis of a complex metal center, the H-cluster, by three dedicated maturases: the radical S-adenosyl-l-methionine (SAM) enzymes HydE and HydG, and the GTPase HydF. A key step of [FeFe]-hydrogenase maturation is the synthesis of the dithiomethylamine (DTMA) bridging ligand, a process recently shown to involve the aminomethyl-lipoyl-H-protein from the glycine cleavage system, whose methylamine group originates from serine and ammonium. Here we use functional assays together with electron paramagnetic resonance and electron-nuclear double resonance spectroscopies to show that serine or aspartate together with their respective ammonia-lyase enzymes can provide the nitrogen for DTMA biosynthesis during in vitro [FeFe]-hydrogenase maturation. We also report bioinformatic analysis of the hyd operon, revealing a strong association with genes encoding ammonia-lyases, suggesting important biochemical and metabolic connections. Together, our results provide evidence that ammonia-lyases play an important role in [FeFe]-hydrogenase maturation by delivering the ammonium required for dithiomethylamine ligand synthesis.

6.
Cancer Immunol Immunother ; 73(11): 217, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235522

RESUMO

OBJECTIVES: To provide molecular and immunological attributes mechanistic insights for the management of radiologically distinctive multiple primary lung cancer (MPLC). METHODS: The Bulk RNA-seq data of MPLC were obtained from our center. The Bulk RNA-seq data and CT images of patients with single primary lung cancer (SPLC) were obtained from GSE103584. Immune infiltration algorithms were performed to investigate the disparities in the immunological microenvironment between the two groups. Single-cell gene analysis was used to explore immune cells composition and communication relationships between cells in MPLC. RESULTS: In MPLC, 11 pure ground-glass opacity nodules (pGGN) and 10 mixed GGN (mGGN) were identified, while in SPLC, the numbers were 18 pGGN and 22 mGGN, respectively. In MPLC, compared to pGGN, mGGN demonstrated a significantly elevated infiltration of CD8+ T cells. Single-cell gene analysis demonstrated that CD8+ T cells play a central role in the signaling among immune cells in MPLC. The transcription factors including MAFG, RUNX3, and TBX21 may play pivotal roles in regulation of CD8+ T cells. Notably, compared to SPLC nodules for both mGGN and pGGN, MPLC nodules demonstrated a significantly elevated degree of tumor-infiltrating immune cells, with this difference being particularly pronounced in mGGN. There was a positive correlation between the proportion of immune cells and consolidation/tumor ratio (CTR). CONCLUSIONS: Our findings provided a comprehensive description about the difference in the immune microenvironment between pGGN and mGGN in early-stage MPLC, as well as between MPLC and SPLC for both mGGN and pGGN. The findings may provide evidence for the design of immunotherapeutic strategies for MPLC.


Assuntos
Neoplasias Pulmonares , Microambiente Tumoral , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Masculino , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Feminino , Pessoa de Meia-Idade , Idoso , Linfócitos do Interstício Tumoral/imunologia , Linfócitos T CD8-Positivos/imunologia , Tomografia Computadorizada por Raios X/métodos
7.
Front Immunol ; 15: 1433315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39238638

RESUMO

Colorectal cancer is the third most common cancer and the second most lethal cancer in the world. The main cause of the disease is due to dietary and behavioral factors. The treatment of this complex disease is mainly based on traditional treatments, including surgery, radiotherapy, and chemotherapy. Due to its high prevalence and high morbidity, more effective treatments with fewer side effects are urgently needed. In recent years, immunotherapy has become a potential therapeutic alternative and one of the fastest-developing treatments. Immunotherapy inhibits tumor growth by activating or enhancing the immune system to recognize and attack cancer cells. This review presents the latest immunotherapies for immune checkpoint inhibitors, cell therapy, tumor-infiltrating lymphocytes, and oncolytic viruses. Some of these have shown promising results in clinical trials and are used in clinical treatment.


Assuntos
Neoplasias Colorretais , Inibidores de Checkpoint Imunológico , Imunoterapia , Humanos , Neoplasias Colorretais/terapia , Neoplasias Colorretais/imunologia , Imunoterapia/métodos , Inibidores de Checkpoint Imunológico/uso terapêutico , Animais , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/imunologia
8.
Discov Oncol ; 15(1): 436, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264458

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is still one of the most prevalent malignancies. Interleukin factors are closely associated with the initiation and progression of cancer. However, the relationship between interleukin factors and LUAD has not been fully elucidated. This study aimed to use Mendelian randomization (MR) and RNA sequencing (RNA-seq) analyses to identify the interleukin factors associated with the onset and progression of LUAD. METHODS: Exposure-related instrumental variables were selected from interleukin factor summary datasets. The LUAD summary dataset from FINGENE served as the outcome. MR and sensitivity analyses were conducted to screen for interleukin factors associated with LUAD occurrence. Transcriptome analyses revealed the role of interleukin factors in lung tissues. The results were validated through Western blotting and further confirmed with driver gene-negative patients from multiple centers. Potential mechanisms influencing LUAD occurrence and development were explored using bulk RNA-seq and single-cell RNA-seq data. RESULTS: MR analysis indicated that elevated plasma levels of IL6RB, IL27RA, IL22RA1, and IL16 are causally associated with increased LUAD risk, while IL18R1 and IL11RA exhibit the opposite effect. Transcriptome analyses revealed that IL11RA, IL18R1, and IL16 were downregulated in tumor tissues compared with normal lung tissue, but only higher expression of IL11RA correlated with improved prognosis in patients with LUAD from different centers and persisted even in driver-gene negative patients. The IL11RA protein level was lower in various LUAD cell lines than in human bronchial epithelial cells. The genes co-expressed with IL11RA were enriched in the Ras signaling pathway and glycosylation processes. Fibroblasts were the primary IL11RA-expressing cell population, with IL11RA+fibroblasts exhibiting a more immature state. The genes differentially expressed between IL11RA+and IL11RA- fibroblasts were involved in the PI3K-Akt/TNF signaling pathway. CONCLUSION: According to the MR and transcriptome analyses, the downregulation of IL11RA was closely related to the occurrence and development of LUAD.

9.
PLoS One ; 19(9): e0310486, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39269960

RESUMO

PURPOSE: To assess the reproducibility of radiomic features (RFs) extracted from dynamic contrast-enhanced computed tomography (DCE-CT) scans of patients diagnosed with hepatocellular carcinoma (HCC) with regards to inter-observer variability and acquisition timing after contrast injection. The predictive ability of reproducible RFs for differentiating between the degrees of HCC differentiation is also investigated. METHODS: We analyzed a set of DCE-CT scans of 39 patients diagnosed with HCC. Two radiologists independently segmented the scans, and RFs were extracted from each sequence of the DCE-CT scans. The same lesion was segmented across the DCE-CT sequences of each patient's scan. From each lesion, 127 commonly used RFs were extracted. The reproducibility of RFs was assessed with regard to (i) inter-observer variability, by evaluating the reproducibility of RFs between the two radiologists; and (ii) timing of acquisition following contrast injection (inter- and intra-imaging phase). The reproducibility of RFs was assessed using the concordance correlation coefficient (CCC), with a cut-off value of 0.90. Reproducible RFs were used for building XGBoost classification models for the differentiation of HCC differentiation. RESULTS: Inter-observer analyses across the different contrast-enhancement phases showed that the number of reproducible RFs was 29 (22.8%), 52 (40.9%), and 36 (28.3%) for the non-contrast enhanced, late arterial, and portal venous phases, respectively. Intra- and inter-sequence analyses revealed that the number of reproducible RFs ranged between 1 (0.8%) and 47 (37%), inversely related with time interval between the sequences. XGBoost algorithms built using reproducible RFs in each phase were found to be high predictive ability of the degree of HCC tumor differentiation. CONCLUSIONS: The reproducibility of many RFs was significantly impacted by inter-observer variability, and a larger number of RFs were impacted by the difference in the time of acquisition after contrast injection. Our findings highlight the need for quality assessment to ensure that scans are analyzed in the same physiologic imaging phase in quantitative imaging studies, or that phase-wide reproducible RFs are selected. Overall, the study emphasizes the importance of reproducibility and quality control when using RFs as biomarkers for clinical applications.


Assuntos
Carcinoma Hepatocelular , Meios de Contraste , Neoplasias Hepáticas , Variações Dependentes do Observador , Tomografia Computadorizada por Raios X , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Masculino , Feminino , Tomografia Computadorizada por Raios X/métodos , Reprodutibilidade dos Testes , Pessoa de Meia-Idade , Idoso , Adulto , Radiômica
10.
Biosens Bioelectron ; 266: 116715, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39232432

RESUMO

Pathogenic bacteria in food or environment, can pose threats to public health, highlighting the requirement of tools for rapid and accurate detection of viable pathogenic bacteria. Herein, we report a sequential endoprotein RNase H2-activating DNAzyme assay (termed epDNAzyme) that enables nucleic acid extraction- and amplification-free detection of viable Salmonella enterica (S. enterica). The direct detection allows for a rapid detection of viable S. enterica within 25 min. Besides, the assay, based on sequential reporting strategy, circumvents internal modifications in the DNAzyme's active domain and improve its catalytic activity. The multiple-turnover DNAzyme cutting and the enhanced catalytic activity of DNAzyme render the epDNAzyme assay to be highly sensitive, and enables the detection of 190 CFU/mL and 0.1% viable S. enterica. The assay has been utilized to detect S. enterica contamination in food and clinical samples, indicating its potential as a promising tool for monitoring pathogen-associated biosafety.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Salmonella enterica , DNA Catalítico/química , Técnicas Biossensoriais/métodos , Salmonella enterica/isolamento & purificação , Salmonella enterica/patogenicidade , Salmonella enterica/genética , Humanos , Ribonuclease H/metabolismo , Ribonuclease H/química , Microbiologia de Alimentos , Limite de Detecção , Infecções por Salmonella/microbiologia , DNA Bacteriano/análise , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/genética
11.
Adv Sci (Weinh) ; : e2406600, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316063

RESUMO

The development of environmentally adaptive solutions for magnetically actuated microrobots to enable targeted delivery in complex and confined fluid environments presents a significant challenge. Inspired by the natural locomotion of crucian carp, a barbell-shaped soft microrobot (MBS2M) is proposed. A mechano-electromagnetic hybrid actuation system is developed to generate oscillating magnetic fields to manipulate the microrobot. The MBS2M can seamlessly transition between three fundamental locomotion modes: fast navigation (FN), high-precision navigation (HPN), and fixed-point rotation (FPR). Moreover, the MBS2M can move in reverse without turning. The multimodal locomotion endows the MBS2M's adaptability in diverse environments. It can smoothly pass through confined channels, climb over obstacles, overcome gravity for vertical motion, track complex pathways, traverse viscous environments, overcome low fluid resistance, and navigate complex spaces mimicking in vivo environments. Additionally, the MBS2M is capable of drug loading and release in response to ultrasound excitation. In an ex vivo porcine liver vein, the microrobot demonstrated targeted navigation under ultrasound guidance, showcasing its potential for specialized in vivo tasks.

12.
Pestic Biochem Physiol ; 204: 106106, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277410

RESUMO

The black cutworm, Agrotis ipsilon (Lepidoptera: Noctuidae), is an important agricultural pest. Phoxim is an organophosphate insecticide that has been widely used to control A. ipsilon. The extensive application of phoxim has resulted in a reduction in phoxim susceptibility in A. ipsilon. However, the molecular mechanisms underlying phoxim tolerance in A. ipsilon remain unclear. In this work, we report the involvement of AiGSTz1, a zeta class glutathione S-transferase, in phoxim tolerance in A. ipsilon. Exposure to a sublethal concentration (LC50) of phoxim dramatically upregulated the transcription level of the AiGSTz1 gene in A. ipsilon larvae, and this upregulation might be caused by phoxim-induced oxidative stress. The recombinant AiGSTz1 protein expressed in Escherichia coli was able to metabolize phoxim. Furthermore, AiGSTz1 displayed antioxidant activity to protect against oxidative stress. Knockdown of AiGSTz1 by RNA interference significantly increased the mortality rate of A. ipsilon larvae in response to phoxim. In addition, the transcription factor AiCncC can bind to the cap 'n' collar isoform C: muscle aponeurosis fibromatosis (CncC:Maf) binding site in the putative promoter of the AiGSTz1 gene. Silencing of AiCncC resulted in a dramatic downregulation of AiGSTz1. These results indicated that AiGSTz1 is involved in phoxim tolerance and is potentially regulated by AiCncC. These findings provide valuable insights into the defense mechanisms used by A. ipsilon against phoxim.


Assuntos
Glutationa Transferase , Proteínas de Insetos , Inseticidas , Mariposas , Compostos Organotiofosforados , Fatores de Transcrição , Animais , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Compostos Organotiofosforados/farmacologia , Compostos Organotiofosforados/toxicidade , Inseticidas/farmacologia , Inseticidas/toxicidade , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Mariposas/efeitos dos fármacos , Mariposas/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Larva/efeitos dos fármacos , Resistência a Inseticidas/genética , Estresse Oxidativo/efeitos dos fármacos
13.
Small ; : e2407328, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308212

RESUMO

Nickel-based metal-organic frameworks (MOFs) with flexible structure units provide a broad platform for designing highly efficient electrocatalysts, especially for alkaline oxygen evolution reaction (OER). However, the stability of MOFs under harsh and dynamic reaction conditions poses significant challenges, resulting in ambiguous structure-activity relationships in MOFs-based OER research. Herein, Ni-benzenedicarboxylic acid-based MOF (NiBDC) is selected as prototypical catalyst to elucidate  its real active sites for OER and reaction pathway under different reaction states. Electrochemical measurements combined with X-ray absorption spectroscopy (XAS) and Raman spectroscopy reveal that the complete reconstruction of NiBDC to ß-NiOOH in the chronoamperometry activation process is responsible for significantly increased OER performance. In situ XAS and Raman results further demonstrate the electro-oxidation of ß-NiOOH into γ-NiOOH at high-potential state (above 1.6 V vs RHE). Furthermore, the collective evidences from key reaction intermediates and isotope-labeled products definitely unravel the potential dependence of OER mechanism: OER process at low-potential state proceeds mainly through the lattice oxygen-mediated mechanism, while adsorbate evolution mechanism emerges as the predominant pathway at high-potential state. Interestingly, the dynamically changing OER mechanism can not only reduce the required overpotential at the low-potential state but also improve the electrochemical stability of catalysts at high-potential state.

14.
Small ; : e2404420, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308234

RESUMO

Wood, as a renewable material, has been regarded as an emerging substrate for self-supporting electrodes in large-scale water electrolysis due to numerous merits such as rich pore structure, abundant hydroxyl groups, etc. However, poor conductivity of wood can greatly suppress the performance of wood-based electrodes. Carbonization process can improve wood's conductivity, but the loss of hydroxyl groups and the required high energy consumption are the drawbacks of such a process. Here, a facile strategy is developed to prepare pristine wood-supported electrode (Ni-NiP/W) for enhanced hydrogen evolution reaction (HER); this improves electrical conductivity of wood while retaining its excellent intrinsic properties. The preparation process involves the deposition of copper on the untreated wood followed with the loading of Ni-NiP catalyst at room temperature. Encouragingly, the Ni-NiP/W exhibits conductive and inherited pristine wood's superhydrophilic and superaerophobic properties, that effectively boost mass and charge transfer. It demonstrates high activity and excellent stability in acidic, alkali, and seawater conditions as well as high current densities of up to 2000 mA cm-2; particularly a record-low HER overpotential of 206 mV in acidic conditions at 1000 mA cm-2. This work fully unlocks the admiring potential of pristine wood as superior substrate for high-performance electrochemical electrodes.

15.
Adv Sci (Weinh) ; : e2403219, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308241

RESUMO

The continuous imbalance of the diabetic wound microenvironment is an important cause of chronic nonhealing, which manifests as a vicious cycle between excessive accumulation of reactive oxygen species (ROS) and abnormal healing. Regulating the microenvironment by suppressing wound inflammation, oxidative stress, and bacterial infection is a key challenge in treating diabetic wounds. In this study, ROS-responsive hydrogels are developed composed of silk fibroin methacrylated (SFMA), modified collagen type III (rCol3MA), and lipid nanoparticles (LNPs). The newly designed hydrogel system demonstrated stable physicochemical properties and excellent biocompatibility. Moreover, the release of antimicrobial peptide (AMP) and puerarin (PUE) demonstrated remarkable efficacy in eradicating bacteria, regulating inflammatory responses, and modulating vascular functions. This multifunctional hydrogel is a simple and efficient approach for the treatment of chronic diabetic infected wounds and holds tremendous potential for future clinical applications.

16.
Oncol Lett ; 28(5): 543, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39310028

RESUMO

[This retracts the article DOI: 10.3892/ol.2018.9711.].

17.
Mol Neurobiol ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312070

RESUMO

Spinal cord injury (SCI) can lead to severe motor and sensory dysfunction, with a high rate of disability and mortality. Due to the complicated pathological process of SCI, there is no effective clinical treatment strategy at present. Although mesenchymal stem cells (MSCs) are effective in the treatment of SCI, their application is limited by factors such as low survival rate, cell dedifferentiation, tumorigenesis, blood-brain barrier, and immune rejection. Fortunately, there is growing evidence that most of the biological and therapeutic effects of MSCs may be mediated by the release of paracrine factors, which are extracellular vesicles called exosomes. Exosomes are small endosomal vesicles with bilaminar membranes that have recently been recognized as key mediators for communication between cells and tissues through the transfer of proteins, lipids, nucleic acids, cytokines, and growth factors. Mesenchymal stem cell-derived exosomes (MSC-exos) play a critical role in SCI repair by promoting angiogenesis and axonal growth, regulating inflammation and immune response, inhibiting apoptosis, and maintaining the integrity of the blood-spinal cord barrier. Furthermore, they can be used to transport genetic material or drugs to target cells, and their relatively small size allows them to permeate the blood-brain barrier. Studies have demonstrated that some exosomal miRNAs derived from MSCs play a significant role in the treatment of SCI. In this review, we summarize recent research advances in MSC-exos and exosomal miRNAs in SCI therapy to better understand this emerging cell-free therapeutic strategy and discuss the advantages and challenges of MSC-exos in future clinical applications.

18.
Life Sci ; 357: 123064, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39299385

RESUMO

SETD3 is a member of SET domain-containing proteins. It has been discovered as the first metazoan protein (actin) histidine methyltransferase. In addition to this well-characterized molecular function of SETD3, it has been clearly shown to be involved in multiple biological processes, such as cell differentiation, tumorigenesis and viral infection. Here, we summarize the current knowledge on the roles of SETD3 beyond its histidine methyltransferase activity, and outline its cellular and molecular modes of action, as well as the upstream regulation on SETD3, therefore providing insights for the molecular basis of how SETD3 fine regulates multiple physiological and pathological processes.

19.
Ann Med ; 56(1): 2399867, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39258959

RESUMO

BACKGROUND AND PURPOSE: Several clinical studies have demonstrated the potential of molecular-targeted agents for the treatment of recurrent or metastatic adenoid cystic carcinoma (R/M ACC). However, there is currently no consensus regarding the efficacy of molecular-targeted agents for patients with R/M ACC. This study aimed to evaluate the therapeutic efficacy and safety of molecular-targeted agents in patients with R/M ACC and provide insights to guide clinical decision-making. MATERIALS AND METHODS: Five databases (PubMed, Embase, Cochrane, ProQuest, and Scopus) were searched based on the search strategy and selection criteria. Primary endpoints were objective response rate (ORR) and progression-free survival (PFS). The secondary endpoints were disease control rate (DCR), overall survival (OS), metastatic sites, and adverse events (AE). Pooled estimates were calculated using a random-effects meta-analysis. RESULTS: Finally, 28 studies, involving 849 patients, were included. The most common metastatic sites were the lungs, bones, liver, lymph nodes, and kidneys. The pooled ORR was 4.0% (95% CI, 0.7-8.8%), the pooled DCR was 80.5% (95% CI, 72.2%-87.7%). Compared with other-target drugs, multiple kinase inhibitors (MKIs) improved the ORR (pooled ORR for single-target drugs vs. MKIs: 5.9% vs. 0%). The combination of MKIs and immune checkpoint inhibitors (ICIs) had a significantly higher ORR (17.9% in the axitinib + avelumab group). The pooled median PFS and OS were 8.35 and 25.62 months, respectively. MKIs improved the median PFS compared to other-target drugs (9.43 months vs 5.06 months). In addition, the most common adverse events (AEs) were fatigue (51.6%), hypertension (44.2%), and nausea (40.0%), followed by hand-foot skin syndrome (36.8%), diarrhoea (34.4%), weight loss (34.2%), anorexia (31.8%), rash (31.7%), and headache (29.0%). CONCLUSION: The findings of this study suggest that MKIs have a better therapeutic efficacy than single-target drugs in patients with R/M ACC. Future studies are warranted to verify the synergistic role of the combination strategy of MKIs plus ICIs, given the limited number of studies on this topic conducted and published to date.


Assuntos
Carcinoma Adenoide Cístico , Terapia de Alvo Molecular , Recidiva Local de Neoplasia , Humanos , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Carcinoma Adenoide Cístico/tratamento farmacológico , Carcinoma Adenoide Cístico/mortalidade , Carcinoma Adenoide Cístico/secundário , Terapia de Alvo Molecular/efeitos adversos , Terapia de Alvo Molecular/métodos , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/mortalidade , Intervalo Livre de Progressão
20.
J Environ Manage ; 370: 122662, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39332300

RESUMO

Algae play critical roles in the carbon dioxide (CO2) exchange between the water bodies and the atmosphere. However, the effects of prokaryotic and eukaryotic algae on carbon utilization, CO2 flux, and the underlying mechanisms remain poorly understood. Therefore, this study investigated the differences in carbon preferences and CO2 fluxes under different algal dominance days. Our research revealed that dissolved inorganic carbon (DIC) concentration fluctuations had a limited effect on the relative abundance of algae. However, shifts in dominant algal phyla induced changes in DIC, with Cyanobacteria preferring HCO3- and Chlorophyta preferring CO2. Analysis of the water chemistry balance indicated that the growth of Chlorophyta had a 15.59 times greater effect on CO2 sinks compared with that of Cyanobacteria. During the Cyanobacteria dominance days, the lower DIC concentration did not result in a reduction in CO2 emissions. However, increases in the dissolved organic carbon concentration provided a favorable environment for Cyanobacteria, which promoted CO2 emissions. The CCM model indicated that the growth of Chlorophyta resulted in CO2 uptake rates at least 3.57 times higher and CO2 leakage rates up to 0.97 times lower compared to Cyanobacteria, accelerating CO2 transport into the cell. Overall, CO2 sink was stronger on Chlorophyta dominance days than on Cyanobacteria dominance days. This study emphasized the influence of algal phyla on CO2 fluxes, revealing the significant CO2 sink associated with Chlorophyta. Further research should investigate how to manipulate environmental factors to favor Chlorophyta growth and effectively reduce CO2 emissions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA