Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.946
Filtrar
1.
Inorg Chem ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356130

RESUMO

Two Co(II) metal-organic frameworks (Co-MOFs), namely, [Co(DMTDC)(bimb)]n (Co-MOF-1) and {[Co(DPTDC)(bimb)(H2O)]·2DMF}n (Co-MOF-2) (H2DMTDC = 3,4-dimethylthieno[2,3-b]thiophene-2,5-dicarboxylic acid, H2DPTDC = 3,4-diphenylthieno[2,3-b]thiophene-2,5-dicarboxylic acid, bimb = 1,4-bis((1H-imidazol-1-yl)methyl)benzene), were obtained by the reaction of flexible N-containing ligand bimb and two structurally related thiophene-containing ligands H2DMTDC and H2DPTDC, respectively. These Co-MOFs displayed a 3D framework and porous structure, respectively. Co-MOF-1 and the activated sample Co-MOF-2' could act as green heterogeneous catalysts for the one-pot multicomponent Biginelli reaction, specifically the dehydration condensation process involving aldehydes, acetoacetates, and urea to yield dihydropyrimidin-2(1H)-ones. The reaction has advantages such as solvent-free conditions, water as only byproduct, readily accessible starting materials, excellent functional group compatibility, and simple operation. Both catalysts exhibited a wide substrate scope and maintained significant catalytic activity over five cycles. The special catalytic performance may be ascribed to functional groups within the ligand.

2.
Expert Opin Drug Deliv ; : 1-10, 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39290161

RESUMO

BACKGROUND: Sustained siRNA release from nanocarriers is difficult to achieve inside the cell after entry: typically, all nanocarriers exhibit burst release of the cargo into the cytoplasm. RESEARCH DESIGN AND METHODS: Layer-by-layer (LbL) nanoparticles (NPs) can be constructed so that they escape endosomes intact, and subsequently exhibit sustained release of the cargo. Our work quantifies intra-cellular siRNA release from multilayered NPs, evaluates mechanism behind the sustained release, and optimizes the duration of release. RESULTS: Intra-cellular studies showed that NPs developed with four layers of poly-L-arginine, alternated with three layers of siRNA layers, were able to elicit effective and prolonged SPARC knockdown activity over 21 days with a single-dose treatment. For the first time, we have quantified the amounts of released siRNA in the cytoplasm and the amount of siRNA remaining inside the NPs at each timepoint. Furthermore, we have correlated the amount of released siRNA within cells by LbL NPs to the cellular knockdown efficiency of multilayered delivery system. CONCLUSIONS: This methodology may provide an excellent screening tool for assessing the duration of gene silencing by various nanocarrier formulations.

3.
Small ; : e2406960, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308288

RESUMO

High-quality CsPbI3 with low defect density is indispensable for acquiring excellent photoelectric performance. Meticulous regulation of the CsPbI3 crystal growth processes is both feasible and efficacious in enhancing the quality of perovskite films. In this study, the cesium formate (CsFo) is introduced. On one hand, its low melting point can induce the crystallization processes at a low level of energy consumption. On the other hand, the pseudo-halide anion can participate in the passivation of iodide vacancies, as the formate anion exhibits a relatively higher affinity with iodide vacancies compared to other halides. Consequently, the introduction of CsFo enhances the quality of CsPbI3 thin films by altering the crystallization process and curbing defect formation. As a result, a steady-state output efficiency of 21.23% and an open-circuit voltage (Voc) as high as 1.25 V are achieved, with both parameters ranking among the highest for this type of solar cell.

4.
J Gastrointest Oncol ; 15(4): 1760-1776, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39279979

RESUMO

Background: Pancreatic adenocarcinoma (PAAD) is a highly lethal malignancy characterized by aggressive growth and poor prognosis. Understanding the molecular mechanisms underlying PAAD is crucial for developing effective therapies. This study aimed to explore the role of TM4SF1 and other key genes in PAAD progression, their prognostic implications, and therapeutic opportunities. Methods: Differential gene expression analysis was performed using PAAD and normal tissue samples to identify upregulated genes, with TM4SF1 emerging as significantly elevated in PAAD. Functional enrichment analysis elucidated associated signaling pathways. A prognostic model comprising BPIFB4, PLEKHN1, CPTP, DVL1, and DDR1 was developed using least absolute shrinkage and selection operator (LASSO) regression and validated in an independent cohort. Genetic mutation analysis provided insights into the functional significance of identified genes. Pharmacogenomic analysis examined associations between gene expression and drug sensitivity. Experimental validation included quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot analyses to confirm gene expression patterns and protein levels. Results: Lower TM4SF1 expression correlated with enhanced anti-tumor immune activity in PAAD, suggesting a complex interplay between genetic expression and immune response. The prognostic model showed robust associations with patient survival outcomes, validated across diverse patient cohorts. Genetic mutation analysis highlighted potential therapeutic targets. Pharmacogenomic analysis revealed correlations between gene expression profiles and drug responsiveness, suggesting personalized treatment strategies. Experimental validation confirmed elevated TM4SF1 levels in tumor tissues and demonstrated its role in promoting cancer cell proliferation and colony formation. Conclusions: This study advances understanding of the molecular landscape of PAAD, emphasizing TM4SF1 as a key regulator and potential therapeutic target. The integration of genetic expression, immune response dynamics, and pharmacogenomics offers a multifaceted approach to personalized treatment strategies for PAAD, paving the way for improved patient outcomes and novel therapeutic interventions. Further research is warranted to elucidate the clinical utility of targeting TM4SF1 and other identified genes in PAAD management.

5.
Bioresour Technol ; 412: 131432, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39236909

RESUMO

In this study, the effect of modulating fulvic acid (FA) concentrations (0, 25 and 50 mg/L) on nitrogen removal in a bioelectrochemical hydrogen autotrophic denitrification system (BHDS) was investigated. Results showed that FA increased the nitrate (NO3--N) removal rate of the BHDSs from 37.8 to 46.2 and 45.2 mg N/(L·d) with a current intensity of 40 mA. The metagenomic analysis revealed that R2 (25 mg/L) was predominantly populated by autotrophic denitrifying microorganisms, which enhanced denitrification performance by facilitating electron transfer. Conversely, R3 (50 mg/L) exhibited an increase in genes related to the heterotrophic process, which improved the denitrification performance through the collaborative action of both autotrophic and heterotrophic denitrification pathways. Besides, the study also identified a potential for nitrogen removal in Serpentinimonas, which have been rarely studied. The interesting set of findings provide valuable reference for optimizing BHDS for nitrogen removal and promoting specific denitrifying genera within the system.


Assuntos
Processos Autotróficos , Benzopiranos , Desnitrificação , Hidrogênio , Hidrogênio/metabolismo , Nitratos/metabolismo , Nitrogênio , Bactérias/metabolismo , Técnicas Eletroquímicas/métodos
6.
Artigo em Inglês | MEDLINE | ID: mdl-39244958

RESUMO

1,3-Butadiene (BD) is a carcinogenic air pollutant. N-acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine (MHBMA3 or 4HBeMA), an urinary BD metabolite with unspecified configuration, is considered the most sensitive BD biomarker and has been used in routine biomonitoring since 2012. However, two issues remain unaddressed: why its concentrations are unusually high relative to other urinary BD biomarkers and why some authors reported no detection of the biomarker whereas other authors readily quantitated it. To address the issues, we synthesized and structurally characterized the authentic trans- and cis-isomers of MHBMA3 (designated NE and NZ, respectively), developed an isotope-dilution LC-MS/MS method for their quantification, and examined 67 urine samples from barbecue restaurant personnel (n = 47) and hotel administrative staff (n = 20). The restaurant personnel were exposed to barbecue fumes, which contain relatively high concentrations of BD. The results showed that NE and NZ had highly similar NMR spectra, and were difficult to be well separated chromatographically. The NMR data showed that the MHBMA3 isomer investigated in most previous studies was NE. We did not detect NE and NZ in any samples; however, an interfering peak with varying heights was observed in most samples. Notably, under the chromatographic conditions used in the literature, the peak exhibited indistinguishable retention time from that of NE. Thus, it is highly likely that the interfering peak has been mis-identified as NE in previous studies, providing a reasonable explanation for the high MHBMA3 concentration in urine. The contradiction in the presence of MHBMA3 in urine was also caused by the mis-identification, because the researchers who reported the absence of MHBMA3 were actually detecting NZ. Thus, we clarified the confusion on MHBMA3 in previous studies through correctly identifying the two MHBMA3 isomers. The presence of NE and NZ in human urine warrants further investigations.


Assuntos
Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Acetilcisteína/urina , Acetilcisteína/análogos & derivados , Acetilcisteína/química , Isomerismo , Limite de Detecção , Butadienos/química , Butadienos/urina , Reprodutibilidade dos Testes , Cisteína/urina , Cisteína/análogos & derivados , Cisteína/química , Biomarcadores/urina , Masculino
7.
Medicine (Baltimore) ; 103(38): e39683, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39312368

RESUMO

To explore the feasibility and application value of texture analysis based on computed tomography (CT) for predicting the differentiation of esophageal squamous cell carcinoma (ESCC). Patients diagnosed with ESCC who underwent chest contrast-enhanced CT before treatment were selected. Based on the pathological results, the patients were stratified into poorly differentiated and moderately well-differentiated groups. FireVoxel software was used to analyze the region of interest based on venous phase CT images. Texture parameters including the mean, median, standard deviation (SD), inhomogeneity, skewness, kurtosis, and entropy were obtained automatically. Differences in the texture parameters and their relationship with the degree of differentiation between the 2 groups were analyzed. The value of CT texture parameters in identifying poor differentiation and moderate-well differentiation of esophageal cancer was analyzed using the ROC curve. A total of 48 patients with ESCC were included, including 24 patients in the poorly differentiated group and 24 patients in the moderate-well-differentiated group. There were negative correlations between SD, inhomogeneity, entropy, and the degree of differentiation of esophageal cancer (P < .05). The correlation of inhomogeneity was the highest (r = -0.505, P < .001). SD, inhomogeneity, and entropy could effectively distinguish between the poorly and moderately well-differentiated groups, with statistically significant differences between the 2 groups (P < .05). The best critical values for SD, inhomogeneity, and entropy were 17.538, 0.017, and 3.917, respectively. The areas under the ROC curve were 0.793, 0.792, and 0.729, respectively, with the SD and inhomogeneity being the best. The application of texture analysis on venous phase CT images holds promise as a method for forecasting the degree of differentiation in esophageal cancers, which could significantly contribute to the preoperative noninvasive evaluation of tumor differentiation.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Tomografia Computadorizada por Raios X , Humanos , Masculino , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/patologia , Feminino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Carcinoma de Células Escamosas do Esôfago/diagnóstico por imagem , Carcinoma de Células Escamosas do Esôfago/patologia , Idoso , Curva ROC , Diagnóstico Diferencial , Adulto , Estudos de Viabilidade , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/patologia , Estudos Retrospectivos
8.
Biomolecules ; 14(9)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39334913

RESUMO

Stimulating erythropoiesis is essential in the treatment of various types of anemia. Sheng Xue Ning (SXN) is commonly used in China as an iron supplement to treat iron deficiency anemia, renal anemia, and anemia in pregnancy. This research reports a novel effect of SXN in enhancing the proliferation of hematopoietic stem/progenitor cell (HSPC) to promote erythropoiesis in the bone marrow, which is distinct from conventional iron supplements that primarily aid in the maturation of red blood cells. Employing a model of hematopoietic dysfunction induced by X-ray exposure, we evaluated the efficacy of SXN in restoring hematopoietic function. SXN significantly promoted the recovery of peripheral erythroid cells and enhanced the proliferation and differentiation of Lin-/c-KIT+/Sca-1+ HSPC in mice exposed to X-ray irradiation. Our results showed that SXN elevated the expression of stem cell factor (SCF) and activated the SCF/c-KIT/PI3K/AKT signaling pathway, facilitating the proliferation and differentiation of HSPC. In vitro, SXN markedly enhanced the proliferation of bone marrow nucleated cell (BMNC) and the colony-forming capacity of BFU-E, CFU-E, and CFU-GM, while also elevating the expression of proteins involved in the SCF/c-KIT/PI3K/AKT pathway in BMNC. Additionally, SXN enhanced the proliferation and differentiation of mesenchymal stem cell (MSC) and increased SCF secretion. In conclusion, SXN demonstrates the capacity to enhance erythropoiesis by upregulating SCF expression, thereby promoting HSPC proliferation and differentiation via the SCF/c-KIT/PI3K/AKT pathway. SXN may offer a new strategy for improving the activity of HSPC and promoting erythropoiesis in the treatment of hematopoiesis disorders.


Assuntos
Diferenciação Celular , Proliferação de Células , Eritropoese , Células-Tronco Hematopoéticas , Transdução de Sinais , Fator de Células-Tronco , Animais , Eritropoese/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Fator de Células-Tronco/metabolismo , Fator de Células-Tronco/farmacologia , Camundongos , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo
9.
Abdom Radiol (NY) ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349643

RESUMO

OBJECTIVES: To develop an end-to-end radiomics-based pipeline for the prediction of International Society of Urological Pathology grade group (ISUP GG) in prostate cancer (PCa). METHODS: This retrospective study includes 356 patients (241 in training set and 115 in independent test set) with histopathologically confirmed PCa who underwent [18F]PSMA-1007 PET/CT scan. Patients were classified into two groups according to their ISUP GG (1-3 vs. 4-5). Radiomics features were extracted from the whole, automatically segmented prostate on PET/CT images, 30 models were constructed by combining 6 feature selection algorithms and 5 machine learning classifiers. The clinical model incorporated age, total prostate-specific antigen (tPSA), maximum standardized uptake value (SUVmax), and prostate volume. The predictive performance of the models was evaluated using the area under the receiver operating characteristic curve (AUC), balanced accuracy (bAcc), and decision curve analysis (DCA). RESULTS: The best-performing radiomics model significantly outperformed clinical model (AUC 0.879 ± 0.041 vs. 0.799 ± 0.051, bAcc 0.745 ± 0.074 vs. 0.629 ± 0.045). On an external independent test set, best-performing radiomics model perform better than clinical model, with an AUC of 0.861 vs. 0.750, p = 0.002 (Delong), and bAcc of 0.764 vs. 0.582, p = 0.043 (McNemar). The learning curve, calibration curve and DCA demonstrated goodness-of-fit and improved benefits in clinical practice. CONCLUSION: The end-to-end radiomics-based pipeline is an effective non-invasive tool to predict ISUP GG in PCa.

11.
Toxins (Basel) ; 16(9)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39330859

RESUMO

Microcystin-LR (MC-LR), frequently generated by cyanobacteria, has been demonstrated to raise the likelihood of liver disease. Few previous studies have explored the potential antagonist against MC-LR. Astaxanthin (ASX) has been shown to possess various beneficial effects in regulating lipid metabolism in the liver. However, whether ASX could alleviate MC-LR-induced hepatic lipid metabolic dysregulation is as yet unclear. In this work, the important roles and mechanisms of ASX in countering MC-LR-induced liver damage and lipid metabolic dysregulation were explored for the first time. The findings revealed that ASX not only prevented weight loss but also enhanced liver health after MC-LR exposure. Moreover, ASX effectively decreased triglyceride, total cholesterol, aspartate transaminase, and alanine aminotransferase contents in mice that were elevated by MC-LR. Histological observation showed that ASX significantly alleviated lipid accumulation and inflammation induced by MC-LR. Mechanically, ASX could significantly diminish the expression of genes responsible for lipid generation (Srebp-1c, Fasn, Cd36, Scd1, Dgat1, and Pparg), which probably reduced lipid accumulation induced by MC-LR. Analogously, MC-LR increased intracellular lipid deposition in THLE-3 cells, while ASX decreased these symptoms by down-regulating the expression of key genes in the lipid synthesis pathway. Our results implied that ASX played a crucial part in lipid synthesis and effectively alleviated MC-LR-induced lipid metabolism dysregulation. ASX might be developed as a novel protectant against hepatic impairment and lipid metabolic dysregulation associated with MC-LR. This study offers new insights for further management of MC-LR-related metabolic diseases.


Assuntos
Metabolismo dos Lipídeos , Fígado , Toxinas Marinhas , Microcistinas , Xantofilas , Microcistinas/toxicidade , Animais , Xantofilas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle
12.
Artigo em Inglês | MEDLINE | ID: mdl-39342072

RESUMO

To explore the predictive value of traditional machine learning (ML) and deep learning (DL) algorithms based on computed tomography pulmonary angiography (CTPA) images for short-term adverse outcomes in patients with acute pulmonary embolism (APE). This retrospective study enrolled 132 patients with APE confirmed by CTPA. Thrombus segmentation and texture feature extraction was performed using 3D-Slicer software. The least absolute shrinkage and selection operator (LASSO) algorithm was used for feature dimensionality reduction and selection, with optimal λ values determined using leave-one-fold cross-validation to identify texture features with non-zero coefficients. ML models (logistic regression, random forest, decision tree, support vector machine) and DL models (ResNet 50 and Vgg 19) were used to construct the prediction models. Model performance was evaluated using receiver operating characteristic (ROC) curves and the area under the curve (AUC). The cohort included 84 patients in the good prognosis group and 48 patients in the poor prognosis group. Univariate and multivariate logistic regression analyses showed that diabetes, RV/LV ≥ 1.0, and Qanadli index form independent risk factors predicting poor prognosis in patients with APE(P < 0.05). A total of 750 texture features were extracted, with 4 key features identified through screening. There was a weak positive correlation between texture features and clinical parameters. ROC curves analysis demonstrated AUC values of 0.85 (0.78-0.92), 0.76 (0.67-0.84), and 0.89 (0.83-0.95) for the clinical, texture feature, and combined models, respectively. In the ML models, the random forest model achieved the highest AUC (0.85), and the support vector machine model achieved the lowest AUC (0.62). And the AUCs for the DL models (ResNet 50 and Vgg 19) were 0.91 (95%CI: 0.90-0.92) and 0.94(95%CI: 0.93-0.95), respectively. Vgg 19 model demonstrated exceptional precision (0.93), recall (0.76), specificity (0.95) and F1 score (0.84). Both ML and DL models based on thrombus texture features from CTPA images demonstrated higher predictive efficacy for short-term adverse outcomes in patients with APE, especially the random forest and Vgg 19 models, potentially assisting clinical management in timely interventions to improve patient prognosis.

13.
Integr Cancer Ther ; 23: 15347354241273962, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39223822

RESUMO

BACKGROUND: The traditional Chinese medicine (TCM) Xiaoliu Pingyi recipe (XLPYR) has been clinically used for several decades, demonstrating favorable therapeutic effects. However, the underlying regulatory mechanisms remain unclear. The aim of this study was to explore the anti-tumor effects of XLPYR and its regulatory role in the vascular microenvironment through in vivo and in vitro experiment. MATERIALS AND METHODS: In the in vivo study, a C57BL/6J mouse model of lung adenocarcinoma (LUAD) allografts was established, and various interventions were administered for 14 days (Model group: administered normal saline via oral gavage; Pemetrexed (PEM) group: intraperitoneally injected with a solution of pemetrexed, once every 3d; XLPYR group: administered XLPYR via oral gavage; Combination (COMBI) group: received XLPYR via oral gavage simultaneously with intraperitoneal injection of pemetrexed solution). Tumor volume and weight were then compared among the groups. The impact of XLPYR on the tumor vascular microenvironment was assessed using immunohistochemistry staining. In the in vitro study, XLPYR-containing serum was prepared by oral administration to SD rats. The CCK-8 assay evaluated the effect of the serum on the proliferation of normal lung epithelial BEAS-2B cells and LUAD A549 cells, determining the optimal intervention concentrations. The cell migration and invasion abilities were evaluated using the wound-healing assay and Transwell assay, respectively. Finally, ELISA assay measured VEGF secretion levels in the LUAD cell supernatant, and RT-qPCR and Western Blot were employed to detect differences in HIF-1α, VEGFA, Ang-2, and PI3K/Akt mRNA and protein expression levels in both in vivo and in vitro experiments. RESULTS: In the in vivo study, XLPYR significantly inhibited the growth of mice LUAD allografts, with enhanced anti-tumor effects observed with prolonged drug intervention. Immunohistochemistry staining revealed reduced MVD and increased pericyte coverage in all intervention groups. Regarding vascular function, FITC-Dextran extravasation in the tumor tissues of the Model group was significantly higher than in the intervention groups, particularly with lower extravasation in the COMBI group compared to the PEM group. In the in vitro study, XLPYR demonstrated a time- and concentration-dependent inhibitory effect on LUAD cells, and with greater sensitivity in inhibiting LUAD cells compared to BEAS-2B cells. The wound-healing assay and Transwell assay confirmed that XLPYR significantly suppressed the migration and invasion abilities of LUAD cells. ELISA experiments further revealed a significant decrease in VEGF expression in the supernatant of each intervention group. RT-qPCR and Western Blot results showed consistent findings between the in vivo and in vitro experiments. HIF-1α, VEGFA, and Ang-2 mRNA and protein expression levels were significantly downregulated in the PEM group, XLPYR group, and COMBI group. There were no significant differences in the expression of PI3K and Akt mRNA and total protein, but the expression levels of phosphorylated p-PI3K and p-Akt were notably downregulated. CONCLUSION: XLPYR significantly inhibited C57BL/6J mouse LUAD allograft growth and improved the vascular microenvironment, thereby intervening in tumor angiogenesis and inducing vascular normalization. It suppressed LUAD cell proliferation, migration, and invasion, while reducing VEGF concentration in the cell supernatant. The regulatory mechanism may involve inhibiting PI3K/Akt protein phosphorylation and downregulating angiogenesis-related factors, such as HIF-1α, VEGF, and Ang-2.


Assuntos
Adenocarcinoma de Pulmão , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Camundongos Endogâmicos C57BL , Microambiente Tumoral , Animais , Medicamentos de Ervas Chinesas/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Camundongos , Adenocarcinoma de Pulmão/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Humanos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Masculino , Pemetrexede/farmacologia , Neovascularização Patológica/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Medicina Tradicional Chinesa/métodos
14.
J Atheroscler Thromb ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39231649

RESUMO

AIM: We aimed to assess the association between non-high-density lipoprotein cholesterol (non-HDL-C) and symptomatic intracranial artery stenosis (sICAS), as well as the impact of non-HDL-C on recurrent vascular events in patients with mild ischemic stroke ( NIHSS score ≤ 5). METHODS: This prospective study was based on data from patients presenting within 72 hours of stroke occurrence. We included patients admitted to 8 Chinese hospitals between September 2019 and November 2021. The associations of non-HDL-C with sICAS and recurrent vascular risk were assessed using multivariate regression models and a restricted cubic spline analysis. RESULTS: Among the 2,544 patients analyzed at 12 months, 652 (25.6%) were diagnosed with sICAS. Elevated non-HDL-C was linked to a higher incidence of sICAS, and the adjusted odd ratios for quintile variables and continuous variables were 1.36 ([95% CI, 1.01-1.81]) and 1.14 ([95% CI, 1.04-1.24). In comparison to those in the first quintile, the adjusted hazard ratio of the fifth quintile of non-HDL-C was 1.19 ([95% CI 0.78-1.80]) for recurrent ischemic stroke and was 0.39 ([95% CI, 0.17-0.91]) for intracranialhemorrhage. CONCLUSIONS: The non-HDL-C level may be a useful predictor of sICAS. Higher non-HDL-C levels may be associated with a lower risk of intracranial hemorrhage in mild, noncardiogenic stroke, but not a higher risk of recurrent ischemic stroke.

15.
J Cancer Res Clin Oncol ; 150(9): 422, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292289

RESUMO

PURPOSE: This research aimed to evaluate the expression level of Homeobox A9 (HOXA9) and its role in tumorigenesis of hepatocellular carcinoma (HCC). METHODS: Bioinformatic analysis, qPCR and Western blot analysis of clinical samples were employed to evaluate mRNA and protein levels of HOXA9 in HCC patients and cell lines. In vitro cell proliferation, migration and invasion, cloning formation, xenograft tumor model, wound healing and apoptosis assays, RNA sequencing analysis of RPL38-silenced HCC-LM3 cells and qPCR, Western blot analysis were performed for validation. Analysis of HOXA9-related genes were conducted to identify their relationships between HOXA9. RESULTS: HOXA9 is dramatically upregulated in HCC. Upregulation of HOXA9 in HCC predicts poor survival of patients. Besides, HOXA9 promotes proliferation, metastasis and prevents apoptosis in HCC in vitro. In addition, HOXA9 controlled by Ribosomal protein RPL38 is upregulated in HCC. Bioinformatic analysis also indicated that HOXA9 is involved in the regulation of DNA methylation and immune infiltration in HCC. CONCLUSION: HOXA9 is dramatically upregulated in hepatocellular carcinoma and predicts poor prognosis. Besides, HOXA9 promoted proliferation and metastasis and prevented apoptosis in vitro, which is regulated by Ribosomal protein RPL38 in HCC.


Assuntos
Apoptose , Carcinoma Hepatocelular , Proliferação de Células , Proteínas de Homeodomínio , Neoplasias Hepáticas , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Animais , Camundongos , Masculino , Prognóstico , Linhagem Celular Tumoral , Camundongos Nus , Metástase Neoplásica , Regulação Neoplásica da Expressão Gênica , Feminino , Camundongos Endogâmicos BALB C , Movimento Celular/genética
16.
Clin Case Rep ; 12(9): e9282, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39267955

RESUMO

Key Clinical Message: High-dose acarbose may increase the risk of diabetic ketosis/diabetic ketoacidosis in Asian patients on sodium-glucose cotransporter-2 inhibitors. Healthcare providers and patients should be cautious to avoid this combination. Abstract: Low-calorie diets should be avoided in patients receiving sodium-glucose cotransporter-2 (SGLT-2) inhibitors to decrease the risk of diabetic ketoacidosis (DKA). High-dose acarbose can decelerate carbohydrate absorption. We detail three cases of diabetic ketosis (DK) following concurrent SGLT-2 inhibitor and high-dose acarbose therapy (acarbose 300 mg/day and dapagliflozin 10 mg/day). Patients, aged 38-63 years with 3-10 years of type 2 diabetes mellitus (T2DM), developed DK, indicated by moderate urinary ketones and high glucose (urine ketone 2+ to 3+ and glucose 3+ to 4+) without acidosis, within 4 days to 1 month post-therapy initiation. Serum glucose was 172.8-253.8 mg/dL; HbA1c was 9.97%-10.80%. The combination therapy was halted, and DK was managed with low-dose intravenous insulin and fluids, followed by intensive insulin therapy. High-dose acarbose with SGLT-2 inhibitors may increase the risk of DK/DKA in Asian patients.

17.
Biomed Eng Online ; 23(1): 92, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261876

RESUMO

Articular cartilage damage and wear can result in cartilage degeneration, ultimately culminating in osteoarthritis. Current surgical interventions offer limited capacity for cartilage tissue regeneration and offer only temporary alleviation of symptoms. Tissue engineering strategies are increasingly recognized as promising modalities for cartilage restoration. Currently, various biological scaffolds utilizing tissue engineering materials are extensively employed in both fundamental and clinical investigations of cartilage repair. In order to optimize the cartilage repair ability of tissue engineering scaffolds, researchers not only optimize the structure and properties of scaffolds from the perspective of materials science and manufacturing technology to enhance their histocompatibility, but also adopt strategies such as loading cells, cytokines, and drugs to promote cartilage formation. This review provides an overview of contemporary tissue engineering strategies employed in cartilage repair, as well as a synthesis of existing preclinical and clinical research. Furthermore, the obstacles faced in the translation of tissue engineering strategies to clinical practice are discussed, offering valuable guidance for researchers seeking to address these challenges.


Assuntos
Cartilagem Articular , Engenharia Tecidual , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Animais , Cicatrização , Regeneração
18.
Brain Commun ; 6(5): fcae222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39229489

RESUMO

The structural network damages in amyotrophic lateral sclerosis patients are evident but contradictory due to the high heterogeneity of the disease. We hypothesized that patterns of structural network impairments would be different in amyotrophic lateral sclerosis subtypes by a data-driven method using 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance hybrid imaging. The data of positron emission tomography, structural MRI and diffusion tensor imaging in fifty patients with amyotrophic lateral sclerosis and 23 healthy controls were collected by a 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance hybrid. Two amyotrophic lateral sclerosis subtypes were identified as the optimal cluster based on grey matter volume and standardized uptake value ratio. Network metrics at the global, local and connection levels were compared to explore the impaired patterns of structural networks in the identified subtypes. Compared with healthy controls, the two amyotrophic lateral sclerosis subtypes displayed a pattern of a locally impaired structural network centralized in the sensorimotor network and a pattern of an extensively impaired structural network in the whole brain. When comparing the two amyotrophic lateral sclerosis subgroups by a support vector machine classifier based on the decreases in nodal efficiency of structural network, the individualized network scores were obtained in every amyotrophic lateral sclerosis patient and demonstrated a positive correlation with disease severity. We clustered two amyotrophic lateral sclerosis subtypes by a data-driven method, which encompassed different patterns of structural network impairments. Our results imply that amyotrophic lateral sclerosis may possess the intrinsic damaged pattern of white matter network and thus provide a latent direction for stratification in clinical research.

19.
Plast Reconstr Surg ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39287625

RESUMO

BACKGROUND: Burn wound healing is a complex physiological process that requires complicated regulation by different cells and tissues. Brown adipose tissue (BAT) plays a key role in the hypermetabolic response to severe burns. However, it is unclear whether BAT contributes to burn wound healing. METHODS: Mice were divided into two groups: brown adipose tissue removal group (BR group) and control group. Burn wounds were created on the backs of mice (weighing 20-25g), who were exposed to 100°C hot water for 12 seconds using a homemade burn tube, resulting in a burned area measuring 10 mm in diameter. The treatments were applied once a day for 10 days. Full-thickness wound tissue was collected on days 1, 4, 7, 10, and analyzed by immunostaining of CD31,α-SMA+, F4/80 and CD206 (n = 3). RESULTS: On days 4, 7, and 10, the wound healing rate of the control group was significantly higher than that of the BR group. In the histological analysis, evident inflammatory infiltration, severe collagen denaturation in the BR group. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the IL-17 pathway was enriched and related genes were up-regulated in the heat map. Immunostaining and transcriptional analyses revealed that angiogenesis and fibroblast were enhanced in the control group, fewer CD206-positive M2 macrophages and higher levels of inflammatory infiltration in the BR group. CONCLUSIONS: Brown adipose tissue may reduce inflammatory signaling in burn wounds by increasing the IL-17A-HIF1α axis and driving M2 macrophage polarization.

20.
Artigo em Inglês | MEDLINE | ID: mdl-39222205

RESUMO

Combined deficiency of coagulation factor V (FV) and factor VIII (FVIII) is a rare bleeding disease caused by variants in either lectin mannose binding 1 (LMAN1) or multiple coagulation factor deficiency 2 (MCFD2) gene. Reducing the level of FVIII by inhibiting the LMAN1-MCFD2 complex may become a new anticoagulant approach. We aimed to find a new therapeutic option for anticoagulation by RNA interference (RNAi) targeting LMAN1 and MCFD2. siRNA sequences with cross-homology between mice and humans were designed based on LMAN1 or MCFD2 transcripts in NCBI and were screened with the Dual-Luciferase reporter assay. The optimal siRNAs were chemically modified and conjugated with three N-acetylgalactosamine molecules (GalNAc-siRNA), promoting their targeted delivery to the liver. The expression of LMAN1 and MCFD2 in cell lines or mice was examined by RT-qPCR and western blotting. For the mice administered with siRNA, we assessed their coagulation function by measuring APTT and the activity of FVIII factor. After administration, siRNAs GalNAc-LMAN1 and GalNAc-MCFD2 demonstrated effective and persistent LMAN1 and MCFD2 inhibition. 7 days after injection of 3mg/kg GalNAc-LMAN1, the LMAN1 mRNA levels reduced to 19.97% ± 3.78%. MCFD2 mRNA levels reduced to 32.22% ± 13.14% with injection of 3mg/kg GalNAc-MCFD2. After repeated administration, APTT was prolonged and the FVIII activity was remarkably decreased. The tail bleeding test of mice showed that the amount of bleeding in the treated group did not significantly increase compared with the control group. Our study confirms that therapy with RNAi targeting LMAN1-MCFD2 complex is effective and can be considered a viable option for anticoagulation drugs. However, the benefits and potential risk of bleeding in thrombophilic mice model needs to be evaluated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA