Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 11(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34441383

RESUMO

Over time, a myriad of applications have been generated for pattern classification algorithms. Several case studies include parametric classifiers such as the Multi-Layer Perceptron (MLP) classifier, which is one of the most widely used today. Others use non-parametric classifiers, Support Vector Machine (SVM), K-Nearest Neighbors (K-NN), Naïve Bayes (NB), Adaboost, and Random Forest (RF). However, there is still little work directed toward a new trend in Artificial Intelligence (AI), which is known as eXplainable Artificial Intelligence (X-AI). This new trend seeks to make Machine Learning (ML) algorithms increasingly simple and easy to understand for users. Therefore, following this new wave of knowledge, in this work, the authors develop a new pattern classification methodology, based on the implementation of the novel Minimalist Machine Learning (MML) paradigm and a higher relevance attribute selection algorithm, which we call dMeans. We examine and compare the performance of this methodology with MLP, NB, KNN, SVM, Adaboost, and RF classifiers to perform the task of classification of Computed Tomography (CT) brain images. These grayscale images have an area of 128 × 128 pixels, and there are two classes available in the dataset: CT without Hemorrhage and CT with Intra-Ventricular Hemorrhage (IVH), which were classified using the Leave-One-Out Cross-Validation method. Most of the models tested by Leave-One-Out Cross-Validation performed between 50% and 75% accuracy, while sensitivity and sensitivity ranged between 58% and 86%. The experiments performed using our methodology matched the best classifier observed with 86.50% accuracy, and they outperformed all state-of-the-art algorithms in specificity with 91.60%. This performance is achieved hand in hand with simple and practical methods, which go hand in hand with this trend of generating easily explainable algorithms.

2.
Diagnostics (Basel) ; 11(5)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925844

RESUMO

The new coronavirus disease (COVID-19), pneumonia, tuberculosis, and breast cancer have one thing in common: these diseases can be diagnosed using radiological studies such as X-rays images. With radiological studies and technology, computer-aided diagnosis (CAD) results in a very useful technique to analyze and detect abnormalities using the images generated by X-ray machines. Some deep-learning techniques such as a convolutional neural network (CNN) can help physicians to obtain an effective pre-diagnosis. However, popular CNNs are enormous models and need a huge amount of data to obtain good results. In this paper, we introduce NanoChest-net, which is a small but effective CNN model that can be used to classify among different diseases using images from radiological studies. NanoChest-net proves to be effective in classifying among different diseases such as tuberculosis, pneumonia, and COVID-19. In two of the five datasets used in the experiments, NanoChest-net obtained the best results, while on the remaining datasets our model proved to be as good as baseline models from the state of the art such as the ResNet50, Xception, and DenseNet121. In addition, NanoChest-net is useful to classify radiological studies on the same level as state-of-the-art algorithms with the advantage that it does not require a large number of operations.

3.
Sensors (Basel) ; 18(8)2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115832

RESUMO

The rapid proliferation of connectivity, availability of ubiquitous computing, miniaturization of sensors and communication technology, have changed healthcare in all its areas, creating the well-known healthcare paradigm of e-Health. In this paper, an embedded system capable of monitoring, learning and classifying biometric signals is presented. The machine learning model is based on associative memories to predict the presence or absence of coronary artery disease in patients. Classification accuracy, sensitivity and specificity results show that the performance of our proposal exceeds the performance achieved by each of the fifty widely known algorithms against which it was compared.


Assuntos
Algoritmos , Biometria/métodos , Tomada de Decisão Clínica , Doença da Artéria Coronariana/diagnóstico , Aprendizado de Máquina , Conjuntos de Dados como Assunto , Feminino , Humanos , Masculino , Sensibilidade e Especificidade
4.
Comput Methods Programs Biomed ; 106(3): 287-307, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21703713

RESUMO

Classification is one of the key issues in medical diagnosis. In this paper, a novel approach to perform pattern classification tasks is presented. This model is called Associative Memory based Classifier (AMBC). Throughout the experimental phase, the proposed algorithm is applied to help diagnose diseases; particularly, it is applied in the diagnosis of seven different problems in the medical field. The performance of the proposed model is validated by comparing classification accuracy of AMBC against the performance achieved by other twenty well known algorithms. Experimental results have shown that AMBC achieved the best performance in three of the seven pattern classification problems in the medical field. Similarly, it should be noted that our proposal achieved the best classification accuracy averaged over all datasets.


Assuntos
Sistemas de Apoio a Decisões Clínicas , Doença/classificação , Memória , Algoritmos , Humanos , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA