Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genet Mol Res ; 13(2): 4406-18, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-25036346

RESUMO

Orchardgrass, or cocksfoot, is an important perennial forage grass worldwide. The comprehensive understanding of orchardgrass accessions will benefit germplasm collection and breeding progress, and it will enhance efforts to improve forage yield and quality. Therefore, 24 novel, simple, polymorphic, and reliable start codon-targeted (SCoT) markers were used to analyze the diversity and genetic relationships among 95 orchardgrass accessions. In total, 273 polymorphic bands were detected with an average of 11.4 bands per primer. The average polymorphic rate for the species was 83.4%, suggesting a high discriminating ability of the SCoT technique for orchardgrass. The molecular variance analysis revealed that 69.13 and 30.87% of variation resided within and among groups, respectively, demonstrating that the orchardgrass germplasms had a higher level of genetic diversity within groups than among geographical regions and distributions. The distinct geographical divergence of orchardgrass was revealed between North America and Oceania. The unweighted pair-group method with arithmetic mean dendrogram revealed a separation of 7 main clusters between 95 accessions according to the geographical origin. Furthermore, each cluster was divided into subgroups mainly according to the origin of its state. The genetic divergence of orchardgrass might be influenced by the ecogeographical conditions, climatic types, breeding systems and gene flow with variations in cultures, bird migration, and breeder selection. These results could facilitate orchardgrass germplasm collection, management, and breeding worldwide.


Assuntos
Códon de Iniciação , Dactylis/classificação , Dactylis/genética , Variação Genética , Evolução Molecular , Marcadores Genéticos , Genoma de Planta , Filogeografia , Polimorfismo Genético
2.
Genet Mol Res ; 13(2): 2491-503, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24615091

RESUMO

Six F1 populations derived from crosses among 4 orchardgrass (Dactylis glomerata L.) cultivars were studied by morphological and simple sequence repeat molecular markers to test for hybrid vigor and a correlation between genetic distance and heterosis. Heterosis was observed for days to length of culm, leaf traits, tiller numbers, etc. Significant differences between obverse and inverse crosses were found for eleven traits. A cytoplasmic effect existed for the agronomic traits considered in this study. The correlations between genetic distance and heterosis were investigated by analyzing the performance of 3 crosses. The results showed that genetic distance was significantly correlated with tiller number (r = 0.834) and negatively correlated with length of culm (r = -0.889). However, there was no significant correlation with heterosis for the other traits, including yield; the correlation coefficient were too small to allow prediction of orchardgrass heterosis from the parental genetics.


Assuntos
Dactylis/genética , Vigor Híbrido/genética , Hibridização Genética , Cruzamentos Genéticos , Dactylis/crescimento & desenvolvimento , Repetições de Microssatélites/genética , Fenótipo
3.
Genet Mol Res ; 12(4): 5111-23, 2013 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-24301771

RESUMO

The accurate identification of orchardgrass (Dactylis glomerata L.) cultivars is necessary to ensure purity for consumers, the effective utilization of cultivars, and to protect the intellectual property for breeders. Therefore, this study aimed to use SSR to construct DNA fingerprinting of orchardgrass cultivars. The genetic diversity of 32 orchardgrass cultivars originated from 21 countries, but grown in China, was assessed using a set of 29 SSR markers distributed across 9 linkage groups of the orchardgrass genome. A total of 229 bands were detected, with an average of 7.9 bands per marker. The average polymorphic rate for the species was 92.1%. The polymorphism information content ranged from 0.771 to 0.893. The genetic similarity ranged from 0.55 to 0.84, which confirmed a high level of genetic diversity among orchardgrass cultivars. The unweighted pair-group method, in combination with the arithmetic mean algorithm (UPGMA) dendrogram and principal coordinate analysis, showed a separation of 6 major clusters among 32 cultivars. The number of distinguishable cultivars ranged from 3 to 23, with an average of 12.1 per primer. Moreover, 11 bands that showed stable and repeatable SSR patterns were amplified by A01E14, A01K14, and D02K13. These bands were used to develop the DNA fingerprints for 32 orchardgrass cultivars. In the DNA fingerprints constructed, each cultivar had a unique fingerprinting pattern that was easily distinguished from the others. These results indicate that the SSR marker was polymorphic, and reliable for use in potential large-scale DNA fingerprinting of orchardgrass cultivars.


Assuntos
Dactylis/classificação , Dactylis/genética , Repetições de Microssatélites , Impressões Digitais de DNA , Ligação Genética , Variação Genética , Filogenia , Polimorfismo Genético
4.
Genet Mol Res ; 11(3): 2441-50, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22653675

RESUMO

Hemarthria compressa is one of the most important and widely utilized forage crops in south China, owing to its high forage yield and capability of adaptation to hot and humid conditions. We examined the population structure and genetic variation within and among 12 populations of H. compressa in south China using sequence-related amplified polymorphism (SRAP) markers. High genetic diversity was found in these samples [percentage polymorphic bands (PPB) = 82.21%, Shannon's diversity index (I) = 0.352]. However, there was relatively low level of genetic diversity at the population level (PPB = 29.17%, I = 0.155). A high degree of genetic differentiation among populations was detected based on other measures and molecular markers (Nei's genetic diversity analysis: G(ST) = 54.19%; AMOVA analysis: F(ST) = 53.35%). The SRAP markers were found to be more efficient than ISSR markers for evaluating population diversity. Based on these findings, we propose changes in sampling strategies for appraising and utilizing the genetic resources of this species.


Assuntos
Variação Genética , Poaceae/genética , Polimorfismo Genético , Sequência de Bases , China , Análise por Conglomerados , Marcadores Genéticos , Genética Populacional , Geografia , Filogenia
5.
Genet Mol Res ; 11(1): 425-33, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22427034

RESUMO

Orchardgrass is a highly variable, perennial forage grass that is cultivated throughout temperate and subtropical regions of the world. Despite its economic importance, the genetic relationship and distance among and within cultivars are largely unknown but would be of great interest for breeding programs. We investigated the molecular variation and structure of cultivar populations, compared the level of genetic diversity among cultivars (Baoxing, Anba, Bote, and Kaimo), subspecies (Dactylis glomerata ssp Woronowii) and advanced breeding line (YA02-116) to determine whether there is still sufficient genetic diversity within presently used cultivars for future breeding progress in China. Twenty individuals were analyzed from each of six accessions using SSR markers; 114 easily scored bands were generated from 15 SSR primer pairs, with an average of 7.6 alleles per locus. The polymorphic rate was 100% among the 120 individuals, reflecting a high degree of genetic diversity. Among the six accessions, the highest genetic diversity was observed in Kaimo (H = 0.2518; I = 0.3916; P = 87.3%) and 02-116 had a lower level of genetic diversity (H = 0.1806; I = 0.2788; P = 58.73%) compared with other cultivars tested. An of molecular variance revealed a much larger genetic variation within accessions (65%) than between them (35%). This observation suggests that these cultivars have potential for providing rich genetic resource for further breeding program. Furthermore, the study also indicated that Chinese orchardgrass breeding has involved strong selection for adaptation to forage production, which may result in restricted genetic base of orchardgrass cultivar.


Assuntos
DNA de Plantas/genética , Dactylis/classificação , Dactylis/genética , Repetições de Microssatélites , Alelos , Primers do DNA/genética , Variação Genética , Genoma de Planta , Filogenia , Polimorfismo Genético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA