RESUMO
Wolbachia naturally infects a wide variety of arthropods, where it plays important roles in host reproduction. It was previously reported that Wolbachia did not infect silkworm. By means of PCR and sequencing we found in this study that Wolbachia is indeed present in silkworm. Phylogenetic analysis indicates that Wolbachia infection in silkworm may have occurred via transfer from parasitic wasps. Furthermore, Southern blotting results suggest a lateral transfer of the wsp gene into the genomes of some wild silkworms. By antibiotic treatments, we found that tetracycline and ciprofloxacin can eliminate Wolbachia in the silkworm and Wolbachia is important to ovary development of silkworm. These results provide clues towards a more comprehensive understanding of the interaction between Wolbachia and silkworm and possibly other lepidopteran insects.
RESUMO
The genetic diversity and genetic structure of three Chinese silkworm species Bombyx mori L., Antheraea pernyi Guérin-Meneville and Samia cynthia ricini Donovan were comparatively assessed based on RAPD markers. At the species level, A. pernyi and B. mori showed high levels of genetic diversity, whereas S. cynthia ricini showed low level of genetic diversity. However, at the strain level, A. pernyi had relatively highest genetic diversity and B. mori had lowest genetic diversity. Analysis of molecular variance (AMOVA) suggested that 60 percent and 72 percent of genetic variation resided within strains in A. pernyi and S. cynthia ricini, respectively, whereas only 16 percent of genetic variation occurred within strains in B. mori. In UPGMA dendrogram, individuals of A. pernyi and B. mori formed the strain-specific genetic clades, whereas those of S. cynthia ricini were distributed in a mixed way. The implications of these results for the conservation and utilization in breeding programs of three silkworm species are discussed.
Assuntos
Animais , Bombyx/classificação , Bombyx/genética , Variação Genética , ChinaRESUMO
Bombyx mori and Bombyx mandarina are morphologically and physiologically similar. In this study, we compared the nucleotide variations in the complete mitochondrial (mt) genomes between the domesticated silkmoth, B. mori, and its wild ancestors, Chinese B. mandarina (ChBm) and Japanese B. mandarina (JaBm). The sequence divergence and transition mutation ratio between B. mori and ChBm are significantly smaller than those observed between B. mori and JaBm. The preference of transition by DNA strands between B. mori and ChBm is consistent with that between B. mori and JaBm, however, the regional variation in nucleotide substitution rate shows a different feature. These results suggest that the ChBm mt genome is not undergoing the same evolutionary process as JaBm, providing evidence for selection on mtDNA. Moreover, investigation of the nucleotide sequence divergence in the A+T-rich region of Bombyx mt genomes also provides evidence for the assumption that the A+T-rich region might not be the fastest evolving region of the mtDNA of insects.
RESUMO
The genetic diversity and genetic structure of three Chinese silkworm species Bombyx mori L., Antheraea pernyi Guérin-Meneville and Samia cynthia ricini Donovan were comparatively assessed based on RAPD markers. At the species level, A. pernyi and B. mori showed high levels of genetic diversity, whereas S. cynthia ricini showed low level of genetic diversity. However, at the strain level, A. pernyi had relatively highest genetic diversity and B. mori had lowest genetic diversity. Analysis of molecular variance (AMOVA) suggested that 60% and 72% of genetic variation resided within strains in A. pernyi and S. cynthia ricini, respectively, whereas only 16% of genetic variation occurred within strains in B. mori. In UPGMA dendrogram, individuals of A. pernyi and B. mori formed the strain-specific genetic clades, whereas those of S. cynthia ricini were distributed in a mixed way. The implications of these results for the conservation and utilization in breeding programs of three silkworm species are discussed.
Assuntos
Bombyx/classificação , Bombyx/genética , Variação Genética , Animais , ChinaRESUMO
Bombyx mori and Bombyx mandarina are morphologically and physiologically similar. In this study, we compared the nucleotide variations in the complete mitochondrial (mt) genomes between the domesticated silkmoth, B. mori, and its wild ancestors, Chinese B. mandarina (ChBm) and Japanese B. mandarina (JaBm). The sequence divergence and transition mutation ratio between B. mori and ChBm are significantly smaller than those observed between B. mori and JaBm. The preference of transition by DNA strands between B. mori and ChBm is consistent with that between B. mori and JaBm, however, the regional variation in nucleotide substitution rate shows a different feature. These results suggest that the ChBm mt genome is not undergoing the same evolutionary process as JaBm, providing evidence for selection on mtDNA. Moreover, investigation of the nucleotide sequence divergence in the A+T-rich region of Bombyx mt genomes also provides evidence for the assumption that the A+T-rich region might not be the fastest evolving region of the mtDNA of insects.