Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plants (Basel) ; 12(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36840302

RESUMO

Pulses provide distinct health benefits due to their low fat content and high protein and fiber contents. Their grain production reaches approximately 93,210 × 103 tons per year. Pulses benefit from the symbiosis with atmospheric N2-fixing bacteria, which increases productivity and reduces the need for N fertilizers, thus contributing to mitigation of environmental impact mitigation. Additionally, the root region harbors a rich microbial community with multiple traits related to plant growth promotion, such as nutrient increase and tolerance enhancement to abiotic or biotic stresses. We reviewed the eight most common pulses accounting for almost 90% of world production: common beans, chickpeas, peas, cowpeas, mung beans, lentils, broad beans, and pigeon peas. We focused on updated information considering both single-rhizobial inoculation and co-inoculation with plant growth-promoting rhizobacteria. We found approximately 80 microbial taxa with PGPR traits, mainly Bacillus sp., B. subtilis, Pseudomonas sp., P. fluorescens, and arbuscular mycorrhizal fungi, and that contributed to improve plant growth and yield under different conditions. In addition, new data on root, nodule, rhizosphere, and seed microbiomes point to strategies that can be used to design new generations of biofertilizers, highlighting the importance of microorganisms for productive pulse systems.

2.
Front Plant Sci ; 11: 602645, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510747

RESUMO

The mung bean has a great potential under tropical conditions given its high content of grain protein. Additionally, its ability to benefit from biological nitrogen fixation (BNF) through association with native rhizobia inhabiting nodule microbiome provides most of the nitrogen independence on fertilizers. Soil microbial communities which are influenced by biogeographical factors and soil properties, represent a source of rhizobacteria capable of stimulating plant growth. The objective of this study is to support selection of beneficial bacteria that form positive interactions with mung bean plants cultivated in tropical soils, as part of a seed inoculation program for increasing grain yield based on the BNF and other mechanisms. Two mung bean genotypes (Camaleão and Esmeralda) were cultivated in 10 soil samples. Nodule microbiome was characterized by next-generation sequencing using Illumina MiSeq 16S rRNA. More than 99% of nodule sequences showed similarity with Bradyrhizobium genus, the only rhizobial present in nodules in our study. Higher bacterial diversity of soil samples collected in agribusiness areas (MW_MT-I, II or III) was associated with Esmeralda genotype, while an organic agroecosystem soil sample (SE_RJ-V) showed the highest bacterial diversity independent of genotype. Furthermore, OTUs close to Bradyrhizobium elkanii have dominated in all soil samples, except in the sample from the organic agroecosystem, where just B. japonicum was present. Bacterial community of mung bean nodules is mainly influenced by soil pH, K, Ca, and P. Besides a difference on nodule colonization by OTU sequences close to the Pseudomonas genus regarding the two genotypes was detected too. Although representing a small rate, around 0.1% of the total, Pseudomonas OTUs were only retrieved from nodules of Esmeralda genotype, suggesting a different trait regarding specificity between macro- and micro-symbionts. The microbiome analysis will guide the next steps in the development of an inoculant for mung bean aiming to promote plant growth and grain yield, composed either by an efficient Bradyrhizobium strain on its own or co-inoculated with a Pseudomonas strain. Considering the results achieved, the assessment of microbial ecology parameters is a potent coadjuvant capable to accelerate the inoculant development process and to improve the benefits to the crop by soil microorganisms.

3.
Braz J Microbiol ; 50(3): 777-789, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31177380

RESUMO

Nine bacterial strains were previously isolated in association with pinewood nematode (PWN) from wilted pine trees. They proved to be nematicidal in vitro, and one of the highest activities, with potential to control PWN, was showed by Serratia sp. M24T3. Its ecology in association with plants remains unclear. This study aimed to evaluate the ability of strain M24T3 to colonize the internal tissues of the model plant Arabidopsis thaliana using confocal microscopy. Plant growth-promoting bacteria (PGPB) functional traits were tested and retrieved in the genome of strain M24T3. In greenhouse conditions, the bacterial effects of all nematicidal strains were also evaluated, co-inoculated or not with Bradyrhizobium sp. 3267, on Vigna unguiculata fitness. Inoculation of strain M24T3 increased the number of A. thaliana lateral roots and the confocal analysis confirmed effective bacterial colonization in the plant. Strain M24T3 showed cellulolytic activity, siderophores production, phosphate and zinc solubilization ability, and indole acetic acid production independent of supplementation with L-tryptophan. In the genome of strain M24T3, genes involved in the interaction with the plants such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, chitinolytic activity, and quorum sensing were also detected. The genomic organization showed ACC deaminase and its leucine-responsive transcriptional regulator, and the activity of ACC deaminase was 594.6 nmol α-ketobutyrate µg protein-1 µl-1. Strain M24T3 in co-inoculation with Bradyrhizobium sp. 3267 promoted the growth of V. unguiculata. In conclusion, this study demonstrated the ability of strain M24T3 to colonize other plants besides pine trees as an endophyte and displays PGPB traits that probably increased plant tolerance to stresses.


Assuntos
Arabidopsis/microbiologia , Nematoides/microbiologia , Serratia/fisiologia , Animais , Antibiose , Arabidopsis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono-Carbono Liases/genética , Carbono-Carbono Liases/metabolismo , Pinus/parasitologia , Doenças das Plantas/parasitologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Percepção de Quorum , Serratia/enzimologia , Serratia/genética , Serratia/isolamento & purificação , Vigna/crescimento & desenvolvimento , Vigna/microbiologia
4.
Braz. J. Microbiol. ; 49(4): 703-713, Oct.-Dec. 2018. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-738192

RESUMO

The leguminous inoculation with nodule-inducing bacteria that perform biological nitrogen fixation is a good example of an eco-friendly agricultural practice. Bradyrhizobium strains BR 3267 and BR 3262 are recommended for cowpea (Vigna unguiculata) inoculation in Brazil and showed remarkable responses; nevertheless neither strain was characterized at species level, which is our goal in the present work using a polyphasic approach. The strains presented the typical phenotype of Bradyrhizobium with a slow growth and a white colony on yeast extract-mannitol medium. Strain BR 3267 was more versatile in its use of carbon sources compared to BR 3262. The fatty acid composition of BR 3267 was similar to the type strain of Bradyrhizobium yuanmingense; while BR 3262 was similar to Bradyrhizobium elkanii and Bradyrhizobium pachyrhizi. Phylogenetic analyses based on 16S rRNA and three housekeeping genes placed both strains within the genus Bradyrhizobium: strain BR 3267 was closest to B. yuanmingense and BR 3262 to B. pachyrhizi. Genome average nucleotide identity and DNADNA reassociation confirmed the genomic identification of B. yuanmingense BR 3267 and B. pachyrhizi BR 3262. The nodC and nifH gene analyses showed that strains BR 3267 and BR 3262 hold divergent symbiotic genes. In summary, the results indicate that cowpea can establish effective symbiosis with divergent bradyrhizobia isolated from Brazilian soils.(AU)

5.
Braz. j. microbiol ; Braz. j. microbiol;49(4): 703-713, Oct.-Dec. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974305

RESUMO

ABSTRACT The leguminous inoculation with nodule-inducing bacteria that perform biological nitrogen fixation is a good example of an "eco-friendly agricultural practice". Bradyrhizobium strains BR 3267 and BR 3262 are recommended for cowpea (Vigna unguiculata) inoculation in Brazil and showed remarkable responses; nevertheless neither strain was characterized at species level, which is our goal in the present work using a polyphasic approach. The strains presented the typical phenotype of Bradyrhizobium with a slow growth and a white colony on yeast extract-mannitol medium. Strain BR 3267 was more versatile in its use of carbon sources compared to BR 3262. The fatty acid composition of BR 3267 was similar to the type strain of Bradyrhizobium yuanmingense; while BR 3262 was similar to Bradyrhizobium elkanii and Bradyrhizobium pachyrhizi. Phylogenetic analyses based on 16S rRNA and three housekeeping genes placed both strains within the genus Bradyrhizobium: strain BR 3267 was closest to B. yuanmingense and BR 3262 to B. pachyrhizi. Genome average nucleotide identity and DNA-DNA reassociation confirmed the genomic identification of B. yuanmingense BR 3267 and B. pachyrhizi BR 3262. The nodC and nifH gene analyses showed that strains BR 3267 and BR 3262 hold divergent symbiotic genes. In summary, the results indicate that cowpea can establish effective symbiosis with divergent bradyrhizobia isolated from Brazilian soils.


Assuntos
Bradyrhizobium/isolamento & purificação , Bradyrhizobium/genética , Inoculantes Agrícolas/isolamento & purificação , Inoculantes Agrícolas/genética , Vigna/microbiologia , Filogenia , Simbiose , Brasil , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Genoma Bacteriano , Evolução Molecular , Bradyrhizobium/classificação , Bradyrhizobium/fisiologia , Genômica , Nódulos Radiculares de Plantas/microbiologia , Inoculantes Agrícolas/classificação , Inoculantes Agrícolas/fisiologia , Vigna/fisiologia
6.
Braz. j. microbiol ; Braz. j. microbiol;49(1): 67-78, Jan.-Mar. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889191

RESUMO

ABSTRACT The use of dark septate fungi (DSE) to promote plant growth can be beneficial to agriculture, and these organisms are important allies in the search for sustainable agriculture practices. This study investigates the contribution of dark septate fungi to the absorption of nutrients by rice plants and their ensuing growth. Four dark septate fungi isolates that were identified by Internal transcribed spacer phylogeny were inoculated in rice seeds (Cv. Piauí). The resulting root colonization was estimated and the kinetic parameters Vmax and Km were calculated from the nitrate contents of the nutrient solution. The macronutrient levels in the shoots, and the NO3--N, NH4+-N, free amino-N and soluble sugars in the roots, sheathes and leaves were measured. The rice roots were significantly colonized by all of the fungi, but in particular, isolate A103 increased the fresh and dry biomass of the shoots and the number of tillers per plant, amino-N, and soluble sugars as well as the N, P, K, Mg and S contents in comparison with the control treatment. When inoculated with isolates A103 and A101, the plants presented lower Km values, indicating affinity increases for NO3--N absorption. Therefore, the A103 Pleosporales fungus presented the highest potential for the promotion of rice plant growth, increasing the tillering and nutrients uptake, especially N (due to an enhanced affinity for N uptake) and P.


Assuntos
Fungos/fisiologia , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ascomicetos/fisiologia , Biomassa , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Nitrogênio/metabolismo , Oryza/metabolismo , Fosfatos/metabolismo , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Potássio/metabolismo
7.
Braz. J. Microbiol. ; 49(1): 67-78, jan.-mar. 2018. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-17904

RESUMO

The use of dark septate fungi (DSE) to promote plant growth can be beneficial to agriculture, and these organisms are important allies in the search for sustainable agriculture practices. This study investigates the contribution of dark septate fungi to the absorption of nutrients by rice plants and their ensuing growth. Four dark septate fungi isolates that were identified by Internal transcribed spacer phylogeny were inoculated in rice seeds (Cv. Piauí). The resulting root colonization was estimated and the kinetic parameters Vmax and Km were calculated from the nitrate contents of the nutrient solution. The macronutrient levels in the shoots, and the NO3--N, NH4+-N, free amino-N and soluble sugars in the roots, sheathes and leaves were measured. The rice roots were significantly colonized by all of the fungi, but in particular, isolate A103 increased the fresh and dry biomass of the shoots and the number of tillers per plant, amino-N, and soluble sugars as well as the N, P, K, Mg and S contents in comparison with the control treatment. When inoculated with isolates A103 and A101, the plants presented lower Km values, indicating affinity increases for NO3--N absorption. Therefore, the A103 Pleosporales fungus presented the highest potential for the promotion of rice plant growth, increasing the tillering and nutrients uptake, especially N (due to an enhanced affinity for N uptake) and P.(AU)


Assuntos
Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Fungos , Nitratos , Trituração de Resíduos Sólidos
8.
Braz J Microbiol ; 49(1): 67-78, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28888828

RESUMO

The use of dark septate fungi (DSE) to promote plant growth can be beneficial to agriculture, and these organisms are important allies in the search for sustainable agriculture practices. This study investigates the contribution of dark septate fungi to the absorption of nutrients by rice plants and their ensuing growth. Four dark septate fungi isolates that were identified by Internal transcribed spacer phylogeny were inoculated in rice seeds (Cv. Piauí). The resulting root colonization was estimated and the kinetic parameters Vmax and Km were calculated from the nitrate contents of the nutrient solution. The macronutrient levels in the shoots, and the NO3--N, NH4+-N, free amino-N and soluble sugars in the roots, sheathes and leaves were measured. The rice roots were significantly colonized by all of the fungi, but in particular, isolate A103 increased the fresh and dry biomass of the shoots and the number of tillers per plant, amino-N, and soluble sugars as well as the N, P, K, Mg and S contents in comparison with the control treatment. When inoculated with isolates A103 and A101, the plants presented lower Km values, indicating affinity increases for NO3--N absorption. Therefore, the A103 Pleosporales fungus presented the highest potential for the promotion of rice plant growth, increasing the tillering and nutrients uptake, especially N (due to an enhanced affinity for N uptake) and P.


Assuntos
Fungos/fisiologia , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Ascomicetos/fisiologia , Biomassa , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Nitrogênio/metabolismo , Oryza/metabolismo , Fosfatos/metabolismo , Filogenia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Potássio/metabolismo
9.
Braz J Microbiol ; 49(4): 703-713, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28410799

RESUMO

The leguminous inoculation with nodule-inducing bacteria that perform biological nitrogen fixation is a good example of an "eco-friendly agricultural practice". Bradyrhizobium strains BR 3267 and BR 3262 are recommended for cowpea (Vigna unguiculata) inoculation in Brazil and showed remarkable responses; nevertheless neither strain was characterized at species level, which is our goal in the present work using a polyphasic approach. The strains presented the typical phenotype of Bradyrhizobium with a slow growth and a white colony on yeast extract-mannitol medium. Strain BR 3267 was more versatile in its use of carbon sources compared to BR 3262. The fatty acid composition of BR 3267 was similar to the type strain of Bradyrhizobium yuanmingense; while BR 3262 was similar to Bradyrhizobium elkanii and Bradyrhizobium pachyrhizi. Phylogenetic analyses based on 16S rRNA and three housekeeping genes placed both strains within the genus Bradyrhizobium: strain BR 3267 was closest to B. yuanmingense and BR 3262 to B. pachyrhizi. Genome average nucleotide identity and DNA-DNA reassociation confirmed the genomic identification of B. yuanmingense BR 3267 and B. pachyrhizi BR 3262. The nodC and nifH gene analyses showed that strains BR 3267 and BR 3262 hold divergent symbiotic genes. In summary, the results indicate that cowpea can establish effective symbiosis with divergent bradyrhizobia isolated from Brazilian soils.


Assuntos
Inoculantes Agrícolas/genética , Inoculantes Agrícolas/isolamento & purificação , Bradyrhizobium/genética , Bradyrhizobium/isolamento & purificação , Vigna/microbiologia , Inoculantes Agrícolas/classificação , Inoculantes Agrícolas/fisiologia , Bradyrhizobium/classificação , Bradyrhizobium/fisiologia , Brasil , DNA Bacteriano/genética , Evolução Molecular , Genoma Bacteriano , Genômica , Filogenia , RNA Ribossômico 16S/genética , Nódulos Radiculares de Plantas/microbiologia , Simbiose , Vigna/fisiologia
10.
Braz. j. microbiol ; Braz. j. microbiol;48(4): 610-611, Oct.-Dec. 2017.
Artigo em Inglês | LILACS | ID: biblio-889168

RESUMO

ABSTRACT The strain BR 3351T (Bradyrhizobium manausense) was obtained from nodules of cowpea (Vigna unguiculata L. Walp) growing in soil collected from Amazon rainforest. Furthermore, it was observed that the strain has high capacity to fix nitrogen symbiotically in symbioses with cowpea. We report here the draft genome sequence of strain BR 3351T. The information presented will be important for comparative analysis of nodulation and nitrogen fixation for diazotrophic bacteria. A draft genome with 9,145,311 bp and 62.9% of GC content was assembled in 127 scaffolds using 100 bp pair-end Illumina MiSeq system. The RAST annotation identified 8603 coding sequences, 51 RNAs genes, classified in 504 subsystems.


Assuntos
Bradyrhizobium/isolamento & purificação , Genoma Bacteriano , Simbiose , Vigna/microbiologia , Composição de Bases , Bradyrhizobium/classificação , Bradyrhizobium/genética , Bradyrhizobium/fisiologia , Brasil , Floresta Úmida , Nódulos Radiculares de Plantas/microbiologia
11.
Braz. j. microbiol ; 48(4): 610-611, Oct.-Dec. 2017.
Artigo em Inglês | VETINDEX | ID: vti-17365

RESUMO

ABSTRACT The strain BR 3351T (Bradyrhizobium manausense) was obtained from nodules of cowpea (Vigna unguiculata L. Walp) growing in soil collected from Amazon rainforest. Furthermore, it was observed that the strain has high capacity to fix nitrogen symbiotically in symbioses with cowpea. We report here the draft genome sequence of strain BR 3351T. The information presented will be important for comparative analysis of nodulation and nitrogen fixation for diazotrophic bacteria. A draft genome with 9,145,311 bp and 62.9% of GC content was assembled in 127 scaffolds using 100 bp pair-end Illumina MiSeq system. The RAST annotation identified 8603 coding sequences, 51 RNAs genes, classified in 504 subsystems.(AU)


Assuntos
Bradyrhizobium/genética , Fixação de Nitrogênio , Genoma , Nodulação
12.
Braz J Microbiol ; 48(4): 610-611, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28237675

RESUMO

The strain BR 3351T (Bradyrhizobium manausense) was obtained from nodules of cowpea (Vigna unguiculata L. Walp) growing in soil collected from Amazon rainforest. Furthermore, it was observed that the strain has high capacity to fix nitrogen symbiotically in symbioses with cowpea. We report here the draft genome sequence of strain BR 3351T. The information presented will be important for comparative analysis of nodulation and nitrogen fixation for diazotrophic bacteria. A draft genome with 9,145,311bp and 62.9% of GC content was assembled in 127 scaffolds using 100bp pair-end Illumina MiSeq system. The RAST annotation identified 8603 coding sequences, 51 RNAs genes, classified in 504 subsystems.


Assuntos
Bradyrhizobium/isolamento & purificação , Genoma Bacteriano , Simbiose , Vigna/microbiologia , Composição de Bases , Bradyrhizobium/classificação , Bradyrhizobium/genética , Bradyrhizobium/fisiologia , Brasil , Floresta Úmida , Nódulos Radiculares de Plantas/microbiologia
13.
Braz. j. microbiol ; Braz. j. microbiol;47(4): 783-784, Oct.-Dec. 2016.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1469630

RESUMO

The strain BR 3262 was isolated from nodule of cowpea (Vigna unguiculata L. Walp) growing in soil of the Atlantic Forest area in Brazil and it is reported as an efficient nitrogen fixing bacterium associated to cowpea. Firstly, this strain was assigned as Bradyrhizobium elkanii, however, recently a more detailed genetic and molecular characterization has indicated it could be a Bradyrhizobium pachyrhizi species. We report here the draft genome sequence of B. pachyrhizi strain BR 3262, an elite bacterium used as inoculant for cowpea. The whole genome with 116 scaffolds, 8,965,178 bp and 63.8% of C+G content for BR 3262 was obtained using Illumina MiSeq sequencing technology. Annotation was added by the RAST prokaryotic genome annotation service and shown 8369 coding sequences, 52 RNAs genes, classified in 504 subsystems.


Assuntos
Bradyrhizobium/classificação , Bradyrhizobium/genética , Fixação de Nitrogênio , Vigna/microbiologia , Nodulação
14.
Braz. j. microbiol ; Braz. j. microbiol;47(4): 781-782, Oct.-Dec. 2016.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1469631

RESUMO

The strain BR 3267 is a nitrogen-fixing symbiotic bacteria isolated from soil of semi-arid area of Brazilian Northeast using cowpea as the trap plant. This strain is used as commercial inoculant for cowpea and presents high efficient in nitrogen fixation as consequence of its adaptation potential to semi-arid conditions. We report here the draft genome sequence of Bradyrhizobium sp. strain BR 3267, an elite bacterium used as inoculant for cowpea. Whole genome sequencing of BR 3267 using Illumina MiSeq sequencing technology has 55 scaffolds with a total genome size of 7,904,309 bp and C+G 63%. Annotation was added by the RAST prokaryotic genome annotation service and has shown 7314 coding sequences and 52 RNA genes.


Assuntos
Bradyrhizobium , Nodulação/genética , Vigna/genética , Vigna/microbiologia , Fixação de Nitrogênio
15.
Braz. J. Microbiol. ; 47(4): 783-784, Out-Dez. 2016.
Artigo em Inglês | VETINDEX | ID: vti-23356

RESUMO

The strain BR 3262 was isolated from nodule of cowpea (Vigna unguiculata L. Walp) growing in soil of the Atlantic Forest area in Brazil and it is reported as an efficient nitrogen fixing bacterium associated to cowpea. Firstly, this strain was assigned as Bradyrhizobium elkanii, however, recently a more detailed genetic and molecular characterization has indicated it could be a Bradyrhizobium pachyrhizi species. We report here the draft genome sequence of B. pachyrhizi strain BR 3262, an elite bacterium used as inoculant for cowpea. The whole genome with 116 scaffolds, 8,965,178 bp and 63.8% of C+G content for BR 3262 was obtained using Illumina MiSeq sequencing technology. Annotation was added by the RAST prokaryotic genome annotation service and shown 8369 coding sequences, 52 RNAs genes, classified in 504 subsystems.(AU)


Assuntos
Bradyrhizobium/classificação , Bradyrhizobium/genética , Vigna/microbiologia , Fixação de Nitrogênio , Nodulação
16.
Braz. J. Microbiol. ; 47(4): 781-782, Out-Dez. 2016.
Artigo em Inglês | VETINDEX | ID: vti-23325

RESUMO

The strain BR 3267 is a nitrogen-fixing symbiotic bacteria isolated from soil of semi-arid area of Brazilian Northeast using cowpea as the trap plant. This strain is used as commercial inoculant for cowpea and presents high efficient in nitrogen fixation as consequence of its adaptation potential to semi-arid conditions. We report here the draft genome sequence of Bradyrhizobium sp. strain BR 3267, an elite bacterium used as inoculant for cowpea. Whole genome sequencing of BR 3267 using Illumina MiSeq sequencing technology has 55 scaffolds with a total genome size of 7,904,309 bp and C+G 63%. Annotation was added by the RAST prokaryotic genome annotation service and has shown 7314 coding sequences and 52 RNA genes.(AU)


Assuntos
Bradyrhizobium , Vigna/genética , Vigna/microbiologia , Nodulação/genética , Fixação de Nitrogênio
17.
Braz J Microbiol ; 47(4): 781-782, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27212153

RESUMO

The strain BR 3267 is a nitrogen-fixing symbiotic bacteria isolated from soil of semi-arid area of Brazilian Northeast using cowpea as the trap plant. This strain is used as commercial inoculant for cowpea and presents high efficient in nitrogen fixation as consequence of its adaptation potential to semi-arid conditions. We report here the draft genome sequence of Bradyrhizobium sp. strain BR 3267, an elite bacterium used as inoculant for cowpea. Whole genome sequencing of BR 3267 using Illumina MiSeq sequencing technology has 55 scaffolds with a total genome size of 7,904,309bp and C+G 63%. Annotation was added by the RAST prokaryotic genome annotation service and has shown 7314 coding sequences and 52 RNA genes.


Assuntos
Bradyrhizobium/classificação , Bradyrhizobium/genética , Genoma Bacteriano , Genômica , Vigna/microbiologia , Composição de Bases , Genes Bacterianos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Nódulos Radiculares de Plantas/microbiologia , Simbiose , Vigna/fisiologia
18.
Braz J Microbiol ; 47(4): 783-784, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27216893

RESUMO

The strain BR 3262 was isolated from nodule of cowpea (Vigna unguiculata L. Walp) growing in soil of the Atlantic Forest area in Brazil and it is reported as an efficient nitrogen fixing bacterium associated to cowpea. Firstly, this strain was assigned as Bradyrhizobium elkanii, however, recently a more detailed genetic and molecular characterization has indicated it could be a Bradyrhizobium pachyrhizi species. We report here the draft genome sequence of B. pachyrhizi strain BR 3262, an elite bacterium used as inoculant for cowpea. The whole genome with 116 scaffolds, 8,965,178bp and 63.8% of C+G content for BR 3262 was obtained using Illumina MiSeq sequencing technology. Annotation was added by the RAST prokaryotic genome annotation service and shown 8369 coding sequences, 52 RNAs genes, classified in 504 subsystems.


Assuntos
Bradyrhizobium/classificação , Bradyrhizobium/genética , Genoma Bacteriano , Genômica , Simbiose , Vigna/microbiologia , Vigna/fisiologia , Composição de Bases , Brasil , Genes Bacterianos , Genômica/métodos , Fixação de Nitrogênio , Fases de Leitura Aberta , Nódulos Radiculares de Plantas/microbiologia
19.
Genome Announc ; 3(4)2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26159523

RESUMO

Microvirga vignae is a recently described species of root-nodule bacteria isolated from cowpeas grown in a Brazilian semiarid region. We report here the 6.4-Mb draft genome sequence and annotation of M. vignae type strain BR 3299. This genome information may help to understand the mechanisms underlying the ability of the organism to grow under drought and high-temperatures conditions.

20.
Environ Microbiol Rep ; 6(4): 354-63, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24992534

RESUMO

Brazilian sugarcane has been shown to obtain part of its nitrogen via biological nitrogen fixation (BNF). Recent reports, based on the culture independent sequencing of bacterial nifH complementary DNA (cDNA) from sugarcane tissues, have suggested that members of the Bradyrhizobium genus could play a role in sugarcane-associated BNF. Here we report on the isolation of Bradyrhizobium spp. isolates and a few other species from roots of sugarcane cultivar RB867515 by two cultivation strategies: direct isolation on culture media and capture of Bradyrhizobium spp. using the promiscuous legume Vigna unguiculata as trap-plant. Both strategies permitted the isolation of genetically diverse Bradyrhizobium spp. isolates, as concluded from enterobacterial repetitive intergenic consensus polymerase chain reaction (PCR) fingerprinting and 16S ribosomal RNA, nifH and nodC sequence analyses. Several isolates presented nifH phylotypes highly similar to nifH cDNA phylotypes detected in field-grown sugarcane by a culture-independent approach. Four isolates obtained by direct plate cultivation were unable to nodulate V. unguiculata and, based on PCR analysis, lacked a nodC gene homologue. Acetylene reduction assay showed in vitro nitrogenase activity for some Bradyrhizobium spp. isolates, suggesting that these bacteria do not require a nodule environment for BNF. Therefore, this study brings further evidence that Bradyrhizobium spp. may play a role in sugarcane-associated BNF under field conditions.


Assuntos
Bradyrhizobium/classificação , Bradyrhizobium/isolamento & purificação , Endófitos/classificação , Endófitos/isolamento & purificação , Saccharum/microbiologia , Proteínas de Bactérias/genética , Bradyrhizobium/genética , Bradyrhizobium/crescimento & desenvolvimento , Brasil , Análise por Conglomerados , Meios de Cultura/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Endófitos/genética , Endófitos/crescimento & desenvolvimento , Técnicas Microbiológicas , Dados de Sequência Molecular , Tipagem Molecular , Nitrogenase/análise , Filogenia , Nodulação , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA