Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 529
Filtrar
1.
Front Immunol ; 15: 1421062, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351234

RESUMO

Aging is generally regarded as an irreversible process, and its intricate relationship with the immune system has garnered significant attention due to its profound implications for the health and well-being of the aging population. As people age, a multitude of alterations occur within the immune system, affecting both innate and adaptive immunity. In the realm of innate immunity, aging brings about changes in the number and function of various immune cells, including neutrophils, monocytes, and macrophages. Additionally, certain immune pathways, like the cGAS-STING, become activated. These alterations can potentially result in telomere damage, the disruption of cytokine signaling, and impaired recognition of pathogens. The adaptive immune system, too, undergoes a myriad of changes as age advances. These include shifts in the number, frequency, subtype, and function of T cells and B cells. Furthermore, the human gut microbiota undergoes dynamic changes as a part of the aging process. Notably, the interplay between immune changes and gut microbiota highlights the gut's role in modulating immune responses and maintaining immune homeostasis. The gut microbiota of centenarians exhibits characteristics akin to those found in young individuals, setting it apart from the microbiota observed in typical elderly individuals. This review delves into the current understanding of how aging impacts the immune system and suggests potential strategies for reversing aging through interventions in immune factors.


Assuntos
Imunidade Adaptativa , Envelhecimento , Microbioma Gastrointestinal , Imunidade Inata , Humanos , Microbioma Gastrointestinal/imunologia , Envelhecimento/imunologia , Animais
2.
Am J Transl Res ; 16(8): 4071-4082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39262759

RESUMO

Medical device research and development are characterized by high costs, extended timelines, inherent risks, and the necessity for interdisciplinary knowledge and skills. It is significantly influenced by policies, making the understanding of medical device innovation both important and challenging. This paper takes a dual approach to analyze medical device innovation. We reviewed representative clinical product of bougie and stylet and summarized the common characteristics and trend of these product. Innovations in these products often involve adding depth markings, replacing material and design structure, enhancing visualization, deciding between reusable or disposable designs, and integrating multi-functional features. This underscores the delicate balance between technological advancements and medical costs for widespread clinical applicability. We explored the guiding role of policy in medical device innovation, emphasizing its impact through an analysis of medical device regulations and policies in China. By offering insights from the perspectives of medical device companies and regulators, this paper aims to elucidate the critical aspects of medical device innovation, assisting researchers in mitigating risks during product development.

3.
BMC Anesthesiol ; 24(1): 312, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243005

RESUMO

BACKGROUND: To analyze the effects of different anesthesia depths on perioperative heart rate variability and hemodynamics in middle-aged and elderly patients undergoing general anesthesia, and to provide a basis for clinical application. METHODS: A total of 111 patients with gastric cancer who were treated with epidural anesthesia combined with general anesthesia were selected as the study subjects, and the patients were randomly divided into group A, group B and group C. The bispectral index (BIS) was maintained by adjusting the infusion speed of anesthetics, the BIS of group A was maintained at 50 ~ 59, the BIS of group B was maintained at 40 ~ 49, and the BIS of group C was maintained at 30 ~ 39. The high-frequency power (HFP), low-frequency power (LFP), total power (TP), mean arterial pressure (MAP), heart rate (HR), diastolic blood pressure (DBP), and systolic blood pressure (SBP) were measured before anesthesia induction (T1), immediately after intubation (T2), 3 min after intubation (T3), and 6 min after extubation (T4). The cognitive function of the patients was evaluated before and 48 h after surgery. RESULTS: The HFP, LFP/HFP, TP, HR, DBP and SBP between the three groups at T1 ~ T3 are significantly difference from each other (P < 0.05). There were significant differences in spontaneous breathing recovery time, eye opening time and extubation time among group A, B and C groups, and group B had the lowest spontaneous breathing recovery time, eye opening time and extubation time (P < 0.05). There was no significant difference in the incidence of adverse reactions during anesthesia between the three groups. The cognitive function score of group B was significantly higher than that of group A and group C (P < 0.05). CONCLUSIONS: BIS maintenance of 40 ~ 49 has little effect on perioperative heart rate variability and hemodynamics in middle-aged and elderly patients undergoing general anesthesia, which is helpful for postoperative recovery.


Assuntos
Anestesia Geral , Frequência Cardíaca , Hemodinâmica , Humanos , Anestesia Geral/métodos , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Hemodinâmica/efeitos dos fármacos , Hemodinâmica/fisiologia , Neoplasias Gástricas/cirurgia , Anestesia Epidural/métodos , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Período Perioperatório
4.
Molecules ; 29(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39274921

RESUMO

Polyimide (PI) refers to a type of high-performance polymer containing imide rings in the main chain, which has been widely used in fields of aerospace, microelectronic and photonic devices, gas separation technology, and so on. However, traditional aromatic PIs are, in general, the inefficient fluorescence or even no fluorescence, due to the strong inter- and intramolecular charge transfer (CT) interactions causing unavoidable fluorescence quenching, which greatly restricts their applications as light-emitting functional layers in the fabrication of organic light-emitting diode (OLED) devices. As such, the development of fluorescent PIs with high fluorescence quantum efficiency for their application fields in the OLED is an important research direction in the near future. In this review, we provide a comprehensive overview of fluorescent PIs as well as the methods to improve the fluorescence quantum efficiency of PIs. It is anticipated that this review will serve as a valuable reference and offer guidance for the design and development of fluorescent PIs with high fluorescence quantum efficiency, ultimately fostering further progress in OLED research.

5.
Front Aging Neurosci ; 16: 1453710, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39267721

RESUMO

Aging encompasses a wide array of detrimental effects that compromise physiological functions, elevate the risk of chronic diseases, and impair cognitive abilities. However, the precise underlying mechanisms, particularly the involvement of specific molecular regulatory proteins in the aging process, remain insufficiently understood. Emerging evidence indicates that c-Jun N-terminal kinase (JNK) serves as a potential regulator within the intricate molecular clock governing aging-related processes. JNK demonstrates the ability to diminish telomerase reverse transcriptase activity, elevate ß-galactosidase activity, and induce telomere shortening, thereby contributing to immune system aging. Moreover, the circadian rhythm protein is implicated in JNK-mediated aging. Through this comprehensive review, we meticulously elucidate the intricate regulatory mechanisms orchestrated by JNK signaling in aging processes, offering unprecedented molecular insights with significant implications and highlighting potential therapeutic targets. We also explore the translational impact of targeting JNK signaling for interventions aimed at extending healthspan and promoting longevity.

6.
Phytopathology ; 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39244657

RESUMO

The commercialized genetically modified (GM) papaya cultivars have protected papaya from the devastating disease caused by papaya ringspot virus (PRSV). However, papaya leaf distortion mosaic virus (PLDMV), which causes similar infection symptoms but is serologically distinct from PRSV, was found as a competitive threat to the papaya industry. Our study surveyed the occurrence of PRSV and PLDMV as well as the transgenic markers of the 35S promoter from cauliflower mosaic virus (CaMV 35S) and the neomycin phosphotransferase II (NPT II) gene in feral papaya plants, which were found frequently growing outside of cultivated papaya fields on Hainan Island. In total, 123 feral papayas, comprising 62 (50.4%) GM plants and 61 (49.6%) non-GM ones, were sampled. Among them, 23 (18.7%) were positive for PRSV, 49 (39.8%) were positive for PLDMV, including 5 plants co-infected by PRSV and PLDMV, and 56 (45.5%) plants were free of either virus. In traditional papaya growing regions, we detected fewer PRSV-infected plants (2 in 33, 6%) than in other regions (21 in 90, 23%). But overall, whether transgenic or not made no significance in PRSV incidence (P=0.230), with 9 PRSV-infected plants among 62 GM papayas and 14 among 61 non-GM papayas. Phylogenetic and genetic differentiation analysis showed a clear correlation between PRSV and PLDMV populations and their geographical origins. Negative selection was estimated for the selected gene regions of both viruses. Notably, PLDMV has deviated from neutral evolution and experienced population expansion, exhibiting increased genetic diversity and is becoming the predominant threat to papaya in Hainan.

7.
Int J Biol Macromol ; 279(Pt 2): 135234, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39218189

RESUMO

The mechanisms by which low light accelerates starch macromolecules degradation by auxin and gibberellin (GA) in geophytes during sprouting remain largely unknown. This study investigated these mechanisms in saffron, grown under low light (50 µmol m-2 s-1) and optimal light (200 µmol m-2 s-1) during the sprouting phase. Low light reduced starch concentration in corms by 34.0 % and increased significantly sucrose levels in corms, leaves, and leaf sheaths by 19.2 %, 9.8 %, and 134.5 %, respectively. This was associated with a 33.3 % increase in GA3 level and enhanced auxin signaling. Leaves synthesized IAA under low light, which was transported to the corms to promote GA synthesis, facilitating starch degradation through a 228.7 % increase in amylase activity. Exogenous applications of GA and IAA, as well as the use of their synthesis or transport inhibitors, confirmed the synergistic role of these phytohormones in starch metabolism. The unigenes associated with GA biosynthesis and auxin signaling were upregulated under low light, highlighting the IAA-GA module role in starch degradation. Moreover, increased respiration rate and invertase activity, crucial for ATP biosynthesis and the tricarboxylic acid cycle, were consistent with the upregulation of related unigenes, suggesting that auxin signaling accelerates starch degradation by promoting energy metabolism. Upregulated of auxin signaling (CsSAUR32) and starch metabolism (CsSnRK1) genes under low light suggests that auxin directly regulate starch degradation in saffron corms. This study elucidates that low light modulates auxin and GA interactions to accelerate starch degradation in saffron corms during sprouting, offering insights for optimizing agricultural practices under suboptimal light conditions.

8.
Chem Commun (Camb) ; 60(72): 9809-9812, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39163003

RESUMO

The twist fusion of a benzothiophene group and the introduction of a 4-methyloxystyryl donor group to the BODIPY core resulted in large spin-orbit coupling values and smaller singlet-triplet energy gaps for the novel infrared absorbed photosensitizers named BSBDP. They show a high reactive oxygen species efficiency exceeding 69% and a fluorescence quantum yield of 23% and are successfully applied in imaging-guided photodynamic therapy in vitro and in vivo.


Assuntos
Compostos de Boro , Fotoquimioterapia , Fármacos Fotossensibilizantes , Tiofenos , Compostos de Boro/química , Compostos de Boro/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Tiofenos/química , Tiofenos/farmacologia , Humanos , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Animais , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Estrutura Molecular
9.
Nat Cardiovasc Res ; 3(5): 567-593, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-39086373

RESUMO

Yolk sac macrophages are the first to seed the developing heart, however we have no understanding of their roles in human heart development and function due to a lack of accessible tissue. Here, we bridge this gap by differentiating human embryonic stem cells (hESCs) into primitive LYVE1+ macrophages (hESC-macrophages) that stably engraft within contractile cardiac microtissues composed of hESC-cardiomyocytes and fibroblasts. Engraftment induces a human fetal cardiac macrophage gene program enriched in efferocytic pathways. Functionally, hESC-macrophages trigger cardiomyocyte sarcomeric protein maturation, enhance contractile force and improve relaxation kinetics. Mechanistically, hESC-macrophages engage in phosphatidylserine dependent ingestion of apoptotic cardiomyocyte cargo, which reduces microtissue stress, leading hESC-cardiomyocytes to more closely resemble early human fetal ventricular cardiomyocytes, both transcriptionally and metabolically. Inhibiting hESC-macrophage efferocytosis impairs sarcomeric protein maturation and reduces cardiac microtissue function. Taken together, macrophage-engineered human cardiac microtissues represent a considerably improved model for human heart development, and reveal a major beneficial role for human primitive macrophages in enhancing early cardiac tissue function.

10.
Proc Natl Acad Sci U S A ; 121(28): e2403581121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968108

RESUMO

Adverse cardiac outcomes in COVID-19 patients, particularly those with preexisting cardiac disease, motivate the development of human cell-based organ-on-a-chip models to recapitulate cardiac injury and dysfunction and for screening of cardioprotective therapeutics. Here, we developed a heart-on-a-chip model to study the pathogenesis of SARS-CoV-2 in healthy myocardium established from human induced pluripotent stem cell (iPSC)-derived cardiomyocytes and a cardiac dysfunction model, mimicking aspects of preexisting hypertensive disease induced by angiotensin II (Ang II). We recapitulated cytopathic features of SARS-CoV-2-induced cardiac damage, including progressively impaired contractile function and calcium handling, apoptosis, and sarcomere disarray. SARS-CoV-2 presence in Ang II-treated hearts-on-a-chip decreased contractile force with earlier onset of contractile dysfunction and profoundly enhanced inflammatory cytokines compared to SARS-CoV-2 alone. Toward the development of potential therapeutics, we evaluated the cardioprotective effects of extracellular vesicles (EVs) from human iPSC which alleviated the impairment of contractile force, decreased apoptosis, reduced the disruption of sarcomeric proteins, and enhanced beta-oxidation gene expression. Viral load was not affected by either Ang II or EV treatment. We identified MicroRNAs miR-20a-5p and miR-19a-3p as potential mediators of cardioprotective effects of these EVs.


Assuntos
Angiotensina II , COVID-19 , Células-Tronco Pluripotentes Induzidas , Dispositivos Lab-On-A-Chip , Miócitos Cardíacos , Humanos , Angiotensina II/farmacologia , Apoptose/efeitos dos fármacos , COVID-19/virologia , COVID-19/metabolismo , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/virologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , SARS-CoV-2/fisiologia
11.
ACS Appl Mater Interfaces ; 16(32): 41916-41926, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39082069

RESUMO

Photosensitizer-based phototherapies, including photodynamic therapy (PDT) and photothermal therapy (PTT), offer safe treatment modalities for tumor ablation with spatiotemporal precision. After photons are absorbed, PDT creates localized chemical damage by generating reactive oxygen species (ROS), while PTT induces localized thermal damage. However, PDT still faces hypoxic tumor challenges, while PTT encounters issues related to heat resistance and potential overheating. The combination of PDT and PTT shows great potential as an effective anticancer strategy. By targeting lysosomes with carefully designed phototherapeutic reagents for combined phototherapy, rapid dysfunction and cell death in cancer cells can be induced, showing promise for cancer treatment. Herein, two α-α-linked bisBODIPYs with tetraphenylethene (TPE) moieties are designed and synthesized. These TPE-substituted bisBODIPYs expand the absorption into NIR range (λmaxabs/λmaxem ∼ 740/810 nm) and confer aggregation-induced emission (AIE) activity (λmaxem ∼ 912 nm). Moreover, these bisBODIPYs self-assemble with surfactant F-127 into nanoparticles (NPs), which efficiently generate ROS (1O2 and •OH) in both solution and cellular environments and demonstrate superior photothermal conversion efficiencies (η ∼ 68.3%) along with exceptional photothermal stability. More importantly, these NPs showed lysosomal targeting and remarkable tumor ablation in cellular and murine models, indicating their potential in precision tumor therapy.


Assuntos
Lisossomos , Nanopartículas , Fármacos Fotossensibilizantes , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Humanos , Animais , Camundongos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Nanopartículas/química , Raios Infravermelhos , Fotoquimioterapia , Estilbenos/química , Estilbenos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fototerapia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Neoplasias/patologia , Camundongos Nus
12.
Toxicology ; 506: 153868, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906241

RESUMO

Deoxynivalenol (DON), a potent mycotoxin, exhibits strong immunotoxicity and poses a significant threat to human and animal health. Cell senescence has been implicated in the immunomodulatory effects of DON; however, the potential of DON to induce cell senescence remains inadequately explored. Emerging evidence suggests that hypoxia-inducible factor-1α (HIF-1α) serves as a crucial target of mycotoxins and is closely involved in cell senescence. To investigate this potential, we employed the RAW264.7 macrophage model and treated the cells with varying concentrations of DON (2-8 µM) for 24 h. Transcriptome analysis revealed that 2365 genes were significantly upregulation while 2405 genes were significantly decreased after exposure to DON. KEGG pathway enrichment analysis demonstrated substantial enrichment in pathways associated with cellular senescence and hypoxia. Remarkably, we observed a rapid and sustained increase in HIF-1α expression following DON treatment. DON induced cell senescence through the activation of the p53/p21WAF1/CIP1 (p21) and p16INK4A (p16) pathways, while also upregulating the expression of nuclear factor-κB, leading to the secretion of senescence-associated secretory phenotype (SASP) factors, including IL-6, IL-8, and CCL2. Crucially, HIF-1α positively regulated the expression of p53, p21, and p16, as well as the secretion of SASP factors. Additionally, DON induced cell cycle arrest at the S phase, enhanced the activity of the senescence biomarker senescence-associated ß-galactosidase, and disrupted cell morphology, characterized by mitochondrial damage. Our study elucidates that DON induces cell senescence in RAW264.7 macrophages by modulating the HIF-1α/p53/p21 pathway. These findings provide valuable insights for the accurate prevention of DON-induced immunotoxicity and associated diseases.


Assuntos
Senescência Celular , Inibidor de Quinase Dependente de Ciclina p21 , Subunidade alfa do Fator 1 Induzível por Hipóxia , Macrófagos , Transdução de Sinais , Tricotecenos , Proteína Supressora de Tumor p53 , Animais , Senescência Celular/efeitos dos fármacos , Camundongos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Proteína Supressora de Tumor p53/metabolismo , Tricotecenos/toxicidade , Células RAW 264.7 , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Phys Chem Chem Phys ; 26(26): 18030-18040, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38894700

RESUMO

The advancement of anode materials for achieving high energy storage is a crucial topic for high-performance Li-ion batteries (LIBs). Here, first-principles calculations were used to conduct a thorough and systematic investigation into lithium storage properties of MXenes with new S functional groups as LIB anode materials. Density of states, diffusion energy barriers, open circuit voltages and storage capacities were calculated to comprehensively evaluate the lithium storage properties of S-functionalized MXenes. Based on the computational results, Ti2CS2 and V2CS2 were selected as excellent candidates from ten M2CS2 MXenes. The diffusion energy barriers of M2CS2 within the range of 0.26-0.32 eV are lower than those of M2CO2 and M2CF2, indicating that M2CS2 anodes exhibit faster charge/discharge rates. By examining the stable crystal structures and comparing atomic positions before and after Li adsorptions, structural phase transitions during Li-ion adsorptions could happen for nearly all M2CS2 MXenes. The phase transitions predicted were directly observed using ab initio molecular dynamic simulations. The cycle stability, storage capacity and other lithium storage properties were enhanced by the reversible structural phase transition.

14.
Redox Biol ; 73: 103139, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38696898

RESUMO

In this study, we observed worsening metabolic crosstalk in mouse models with concomitant metabolic disorders such as hyperhomocysteinemia (HHcy), hyperlipidemia, and hyperglycemia and in human coronary artery disease by analyzing metabolic profiles. We found that HHcy worsening is most sensitive to other metabolic disorders. To identify metabolic genes and metabolites responsible for the worsening metabolic crosstalk, we examined mRNA levels of 324 metabolic genes in Hcy, glucose-related and lipid metabolic systems. We examined Hcy-metabolites (Hcy, SAH and SAM) by LS-ESI-MS/MS in 6 organs (heart, liver, brain, lung, spleen, and kidney) from C57BL/6J mice. Through linear regression analysis of Hcy-metabolites and metabolic gene mRNA levels, we discovered that SAH-responsive genes were responsible for most metabolic changes and all metabolic crosstalk mediated by Serine, Taurine, and G3P. SAH-responsive genes worsen glucose metabolism and cause upper glycolysis activation and lower glycolysis suppression, indicative of the accumulation of glucose/glycogen and G3P, Serine synthesis inhibition, and ATP depletion. Insufficient Serine due to negative correlation of PHGDH with SAH concentration may inhibit the folate cycle and transsulfurarion pathway and consequential reduced antioxidant power, including glutathione, taurine, NADPH, and NAD+. Additionally, we identified SAH-activated pathological TG loop as the consequence of increased fatty acid (FA) uptake, FA ß-oxidation and Ac-CoA production along with lysosomal damage. We concluded that HHcy is most responsive to other metabolic changes in concomitant metabolic disorders and mediates worsening metabolic crosstalk mainly via SAH-responsive genes, that organ-specific Hcy metabolism determines organ-specific worsening metabolic reprogramming, and that SAH, acetyl-CoA, Serine and Taurine are critical metabolites mediating worsening metabolic crosstalk, redox disturbance, hypomethylation and hyperacetylation linking worsening metabolic reprogramming in metabolic syndrome.


Assuntos
Síndrome Metabólica , Animais , Camundongos , Humanos , Síndrome Metabólica/metabolismo , Síndrome Metabólica/genética , Masculino , Modelos Animais de Doenças , Hiper-Homocisteinemia/metabolismo , Hiper-Homocisteinemia/genética , Camundongos Endogâmicos C57BL , Glucose/metabolismo , Metaboloma , Metabolômica/métodos , Redes e Vias Metabólicas
15.
Sci Rep ; 14(1): 10085, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698166

RESUMO

The North China Plain (NCP) is one of the three great plains in China and also serves as a vital region for grain, cotton, and oil production. Under the influence of regional hydrothermal changes, groundwater overexploitation, and seawater intrusion, the vegetation coverage is undergoing continuous alterations. However, a comprehensive assessment of impacts of precipitation, temperature, and groundwater on vegetation in marine sedimentary regions of the NCP is lacking. Heilonggang Basin (HB) is located in the low-lying plain area in the east of NCP, which is part of the NCP. In this study, the HB was chosen as a typical area of interest. We collected a series of data, including the Normalized Difference Vegetation Index (NDVI), precipitation, temperature, groundwater depth, and Total Dissolved Solids (TDS) from 2001 to 2020. Then the spatiotemporal variation in vegetation was analyzed, and the underlying driving mechanisms of vegetation variation were explored in this paper. The results show that NDVI experiences a rapid increase from 2001 to 2004, followed by stable fluctuations from 2004 to 2020. The vegetation in the HB has achieved an overall improvement in the past two decades, with 76% showing improvement, mainly in the central and eastern areas, and 24% exhibiting deterioration in other areas. From 2001 to 2020, NDVI correlates positively with precipitation, whereas its relationship with temperature fluctuates between positive and negative, and is not statistically significant. There is a threshold for the synergistic change of NDVI and groundwater depth. When the groundwater depth is lower than 3.8 m, NDVI increases sharply with groundwater depth. However, beyond this threshold, NDVI tends to stabilize and fluctuate. In the eastern coastal areas, NDVI exhibits a strong positive correlation with groundwater depth, influenced by the surface soil TDS controlled by groundwater depth. In the central regions, a strong negative correlation is observed, where NDVI is primarily impacted by soil moisture under the control of groundwater. In the west and south, a strong positive correlation exists, with NDVI primarily influenced by the intensity of groundwater exploitation. Thus, precipitation and groundwater are the primary driving forces behind the spatiotemporal variability of vegetation in the HB, while in contrast, the influence of temperature is uncertain. This study has elucidated the mechanism of vegetation response, providing a theoretical basis for mitigating adverse factors affecting vegetation growth and formulating rational water usage regulations in the NCP.


Assuntos
Água Subterrânea , China , Água Subterrânea/análise , Sedimentos Geológicos/análise , Temperatura , Análise Espaço-Temporal , Monitoramento Ambiental/métodos , Clima , Plantas , Ecossistema
16.
Mol Cancer ; 23(1): 107, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38760815

RESUMO

Neutrophils play a Janus-faced role in the complex landscape of cancer pathogenesis and immunotherapy. As immune defense cells, neutrophils release toxic substances, including reactive oxygen species and matrix metalloproteinase 9, within the tumor microenvironment. They also modulate the expression of tumor necrosis factor-related apoptosis-inducing ligand and Fas ligand, augmenting their capacity to induce tumor cell apoptosis. Their involvement in antitumor immune regulation synergistically activates a network of immune cells, bolstering anticancer effects. Paradoxically, neutrophils can succumb to the influence of tumors, triggering signaling cascades such as JAK/STAT, which deactivate the immune system network, thereby promoting immune evasion by malignant cells. Additionally, neutrophil granular constituents, such as neutrophil elastase and vascular endothelial growth factor, intricately fuel tumor cell proliferation, metastasis, and angiogenesis. Understanding the mechanisms that guide neutrophils to collaborate with other immune cells for comprehensive tumor eradication is crucial to enhancing the efficacy of cancer therapeutics. In this review, we illuminate the underlying mechanisms governing neutrophil-mediated support or inhibition of tumor progression, with a particular focus on elucidating the internal and external factors that influence neutrophil polarization. We provide an overview of recent advances in clinical research regarding the involvement of neutrophils in cancer therapy. Moreover, the future prospects and limitations of neutrophil research are discussed, aiming to provide fresh insights for the development of innovative cancer treatment strategies targeting neutrophils.


Assuntos
Imunoterapia , Neoplasias , Neutrófilos , Microambiente Tumoral , Humanos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/patologia , Imunoterapia/métodos , Microambiente Tumoral/imunologia , Animais , Transdução de Sinais
17.
Arch Toxicol ; 98(8): 2393-2408, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38744709

RESUMO

Increasing evidence has revealed that cellular senescence drives NDs, including Alzheimer's disease (AD) and Parkinson's disease. Different senescent cell populations secrete senescence-associated secretory phenotypes (SASP), including matrix metalloproteinase-3, interleukin (IL)-1α, IL-6, and IL-8, which can harm adjacent microglia. Moreover, these cells possess high expression levels of senescence hallmarks (p16 and p21) and elevated senescence-associated ß-galactosidase activity in in vitro and in vivo ND models. These senescence phenotypes contribute to the deposition of ß-amyloid and tau-protein tangles. Selective clearance of senescent cells and SASP regulation by inhibiting p38/mitogen-activated protein kinase and nuclear factor kappa B signaling attenuate ß-amyloid load and prevent tau-protein tangle deposition, thereby improving cognitive performance in AD mouse models. In addition, telomere shortening, a cellular senescence biomarker, is associated with increased ND risks. Telomere dysfunction causes cellular senescence, stimulating IL-6, tumor necrosis factor-α, and IL-1ß secretions. The forced expression of telomerase activators prevents cellular senescence, yielding considerable neuroprotective effects. This review elucidates the mechanism of cellular senescence in ND pathogenesis, suggesting strategies to eliminate or restore senescent cells to a normal phenotype for treating such diseases.


Assuntos
Senescência Celular , Doenças Neurodegenerativas , Humanos , Senescência Celular/efeitos dos fármacos , Animais , Fenótipo Secretor Associado à Senescência , Doença de Alzheimer , Peptídeos beta-Amiloides/metabolismo , Doença de Parkinson/metabolismo , Encurtamento do Telômero/efeitos dos fármacos , Transdução de Sinais
18.
Sci Total Environ ; 937: 173377, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38796025

RESUMO

Biodiversity conservation amidst the uncertainty of climate change presents unique challenges that necessitate precise management strategies. The study reported here was aimed at refining understanding of these challenges and to propose specific, actionable management strategies. Employing a quantitative literature analysis, we meticulously examined 1268 research articles from the Web of Science database between 2005 and 2023. Through Cite Spaces and VOS viewer software, we conducted a bibliometric analysis and thematic synthesis to pinpoint emerging trends, key themes, and the geographical distribution of research efforts. Our methodology involved identifying patterns within the data, such as frequency of keywords, co-authorship networks, and citation analysis, to discern the primary focus areas within the field. This approach allowed us to distinguish between research concentration areas, specifically highlighting a predominant interest in Environmental Sciences Ecology (67.59 %) and Biodiversity Conservation (22.63 %). The identification of adaptive management practices and ecosystem services maintenance are central themes in the research from 2005 to 2023. Moreover, challenges such as understanding phenological shifts, invasive species dynamics, and anthropogenic pressures critically impact biodiversity conservation efforts. Our findings underscore the urgent need for precise, data-driven decision-making processes in the face of these challenges. Addressing the gaps identified, our study proposes targeted solutions, including the establishment of germplasm banks for at-risk species, the development of advanced genomic and microclimate models, and scenario analysis to predict and mitigate future conservation challenges. These strategies are aimed at enhancing the resilience of biodiversity against the backdrop of climate change through integrated, evidence-based approaches. By leveraging the compiled and analyzed data, this study offers a foundational framework for future research and practical action in biodiversity conservation strategies, demonstrating a path forward through detailed analysis and specified solutions.


Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , Conservação dos Recursos Naturais/métodos , Ecossistema
19.
Chem Commun (Camb) ; 60(38): 5054-5057, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38634482

RESUMO

Three new distinct NIR α,α-NH-bridged BODIPY dimers were prepared by a direct nucleophilic substitution reaction. The synergistic effects of the nitrogen bridges and strong excitonic coupling between each BODIPY unit play major roles in enhancing the delocalization of an electron spin over the entire BODIPY dimers. The in situ formed aminyl radical dimer showed an absorption maximum at 1040 nm.

20.
Colloids Surf B Biointerfaces ; 238: 113888, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599077

RESUMO

Gallium (Ga) is a well-known liquid metals (LMs) that possesses the features, such as fluidity, low viscosity, high electrical and thermal conductivity, and relative low toxicity. Owing to the weak interactions between Ga atoms, Ga LMs can be adopted for fabrication of various Ga LMs-based functional materials via ultrasonic treatment and mechanical grinding. Moreover, many organic compounds/polymers can be coated on the surface of LMs-based materials through coordination between oxidized outlayers of Ga LMs and functional groups of organic components. Over the past decades, different strategies have been reported for synthesizing Ga LMs-based functional materials and their biomedical applications have been intensively investigated. Although some review articles have published over the past few years, a concise review is still needed to advance the latest developments in biomedical fields. The main context can be majorly divided into two parts. In the first section, various strategies for fabrication of Ga LMs-based functional materials via top-down strategies were introduced and discussed. Following that, biomedical applications of Ga LMs-based functional materials were summarized and design Ga LMs-based functional materials with enhanced performance for cancer photothermal therapy (PTT) and PTT combined therapy were highlighted. We trust this review article will be beneficial for scientists to comprehend this promising field and greatly advance future development for fabrication of other Ga LMs-based functional materials with better performance for biomedical applications.


Assuntos
Gálio , Gálio/química , Humanos , Neoplasias/tratamento farmacológico , Terapia Fototérmica/métodos , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA