Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(16): 14466-14477, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39088797

RESUMO

Mesenchymal-epithelial transition factor (MET) is a receptor tyrosine kinase that serves a critical function in numerous developmental, morphogenic, and proliferative signaling pathways. If dysregulated, MET has been shown to be involved in the development and survival of several cancers, including non-small cell lung cancer (NSCLC), renal cancer, and other epithelial tumors. Currently, the clinical efficacy of FDA approved MET inhibitors is limited by on-target acquired resistance, dose-limiting toxicities, and less than optimal efficacy against brain metastasis. Therefore, there is still an unmet medical need for the development of MET inhibitors to address these issues. Herein we report the application of structure-based design for the discovery and development of a novel class of brain-penetrant MET inhibitors with enhanced activity against clinically relevant mutations and improved selectivity. Compound 13 with a MET D1228N cell line IC50 value of 23 nM showed good efficacy in an intracranial tumor model and increased the median overall survival of the animals to 100% when dosed orally at 100 mg/kg daily for 21 days.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-met , Pirazóis , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/metabolismo , Humanos , Animais , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/farmacologia , Pirazóis/química , Pirazóis/síntese química , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Descoberta de Drogas , Pirazinas/farmacologia , Pirazinas/síntese química , Pirazinas/química , Pirazinas/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Camundongos , Mutação , Ratos
2.
ACS Catal ; 9(12): 11199-11206, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33996196

RESUMO

Thermal motions of enzymes have been invoked to explain the temperature dependence of kinetic isotope effects (KIE) in enzyme-catalyzed hydride transfers. Formate dehydrogenase (FDH) from Candida boidinii exhibits a temperature independent KIE that becomes temperature dependent upon mutation of hydrophobic residues in the active site. Ternary complexes of FDH that mimic the transition state structure allow investigation of how these mutations influence active-site dynamics. A combination of X-ray crystallography, two-dimensional infrared (2D IR) spectroscopy, and molecular dynamic simulations characterize the structure and dynamics of the active site. FDH exhibits oscillatory frequency fluctuations on the picosecond timescale, and the amplitude of these fluctuations correlates with the temperature dependence of the KIE. Both the kinetic and dynamic phenomena can be reproduced computationally. These results provide experimental evidence for a connection between the temperature dependence of KIEs and motions of the active site in an enzyme-catalyzed reaction consistent with activated tunneling models of the hydride transfer reaction.

3.
Biochemistry ; 55(19): 2760-71, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27100912

RESUMO

The structure of formate dehydrogenase from Candida boidinii (CbFDH) is of both academic and practical interests. First, this enzyme represents a unique model system for studies on the role of protein dynamics in catalysis, but so far these studies have been limited by the availability of structural information. Second, CbFDH and its mutants can be used in various industrial applications (e.g., CO2 fixation or nicotinamide recycling systems), and the lack of structural information has been a limiting factor in commercial development. Here, we report the crystallization and structural determination of both holo- and apo-CbFDH. The free-energy barrier for the catalyzed reaction was computed and indicates that this structure indeed represents a catalytically competent form of the enzyme. Complementing kinetic examinations demonstrate that the recombinant CbFDH has a well-organized reactive state. Finally, a fortuitous observation has been made: the apoenzyme crystal was obtained under cocrystallization conditions with a saturating concentration of both the cofactor (NAD(+)) and inhibitor (azide), which has a nanomolar dissociation constant. It was found that the fraction of the apoenzyme present in the solution is less than 1.7 × 10(-7) (i.e., the solution is 99.9999% holoenzyme). This is an extreme case where the crystal structure represents an insignificant fraction of the enzyme in solution, and a mechanism rationalizing this phenomenon is presented.


Assuntos
Candida/enzimologia , Formiato Desidrogenases/química , Proteínas Fúngicas/química , Apoenzimas/antagonistas & inibidores , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Candida/genética , Formiato Desidrogenases/antagonistas & inibidores , Formiato Desidrogenases/genética , Formiato Desidrogenases/metabolismo , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Cinética , NAD/química , NAD/metabolismo , Azida Sódica/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA