Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37112161

RESUMO

Pulsed electrolysis has become a promising research topic in recent decades due to advances in solid-state semiconductor devices. These technologies have enabled the design and construction of simpler, more efficient, and less costly high-voltage and high-frequency power converters. In this paper, we study high-voltage pulsed electrolysis considering variations in both power converter parameters and cell configuration. Experimental results are obtained for frequency variations ranging from 10 Hz to 1 MHz, voltage changes from 2 V to 500 V, and electrode separations from 0.1 to 2 mm. The results demonstrate that pulsed plasmolysis is a promising method for decomposing water for hydrogen production.

2.
Sensors (Basel) ; 23(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37112379

RESUMO

The systems used to distribute electricity are currently undergoing a series of changes that are aiding in the development of smart grids.

3.
Sensors (Basel) ; 23(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37050455

RESUMO

Software Defined Networking (SDN) is a communication alternative to increase the scalability and resilience of microgrid hierarchical control. The common architecture has a centralized and monolithic topology, where the controller is highly susceptible to latency problems, resiliency, and scalability issues. This paper proposes a novel and intelligent control network to improve the performance of microgrid communications, solving the typical drawback of monolithic SDN controllers. The SDN controller's functionalities are segregated into microservices groups and distributed through a bare-metal Kubernetes cluster. Results are presented from PLECS hardware in the loop simulation to validate the seamless transition between standard hierarchical control to the SDN networked microgrid. The microservices significantly impact the performance of the SDN controller, decreasing the latency by 10.76% compared with a monolithic architecture. Furthermore, the proposed approach demonstrates a 42.23% decrease in packet loss versus monolithic topologies and a 53.41% reduction in recovery time during failures. Combining Kubernetes with SDN microservices can eliminate the single point of failure in hierarchical control, improve application recovery time, and enhance containerization benefits, including security and portability. This proposal represents a reference framework for future edge computing and intelligent control approaches in networked microgrids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA