Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Toxicol (Phila) ; 61(9): 702-704, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37831009

RESUMO

INTRODUCTION: Karinia brevis, a marine dinoflagellate, is the causative organism for "red-tide" on the east coast of Florida.This microbe produces brevetoxins, which bioaccumulate in filter feeding bivalve shellfish. In humans, inhalational exposure is common, while ingestion of contaminated shellfish is more rare. Ingested brevetoxin causes gastrointestinal and neurological symptoms collectively known as neurotoxic shellfish poisoning. CASE CLUSTER: A group of tourists collected clams from a beach during a red tide event. The clams were soaked in brine, microwaved, and consumed for lunch. The index patient experienced seizure-like activity postprandially prompting the cohort to present for medical attention. Five people presented to the emergency department with neurotoxic shellfish poisoning-related symptoms. All patients received supportive care only. Symptoms resolved within 24 hours. Serum brevetoxin concentrations were reported for four patients. DISCUSSION: Ingestion of brevetoxin is rare but may become more common as the frequency and severity of "red-tide" events increase. In our cluster, each person consumed a different number of clams and presented with classic and some "non-classic" symptoms. A trend toward more severe symptoms with a larger number of clams ingested was observed. CONCLUSIONS: This case cluster describes the clinical course of individuals after consumption of brevetoxin contaminated shellfish.


Assuntos
Bivalves , Dinoflagellida , Intoxicação por Frutos do Mar , Animais , Humanos , Intoxicação por Frutos do Mar/diagnóstico , Intoxicação por Frutos do Mar/etiologia , Água , Golfo do México , Ingestão de Alimentos
2.
bioRxiv ; 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37293112

RESUMO

Mycobacterium abscessus is a nontuberculous mycobacterium emerging as a significant pathogen for individuals with chronic lung disease, including cystic fibrosis and chronic obstructive pulmonary disease. Current therapeutics have poor efficacy. New strategies of bacterial control based on host defenses are appealing, but anti-mycobacterial immune mechanisms are poorly understood and are complicated by the appearance of smooth and rough morphotypes with distinct host responses. We explored the role of the complement system in the clearance of M. abscessus morphotypes by neutrophils, an abundant cell in these infections. M. abscessus opsonized with plasma from healthy individuals promoted greater killing by neutrophils compared to opsonization in heat-inactivated plasma. Rough clinical isolates were more resistant to complement but were still efficiently killed. Complement C3 associated strongly with the smooth morphotype while mannose-binding lectin 2 was associated with the rough morphotype. M. abscessus killing was dependent on C3, but not on C1q or Factor B; furthermore, competition of mannose-binding lectin 2 binding with mannan or N-acetyl-glucosamine during opsonization did not inhibit killing. These data suggest that M. abscessus does not canonically activate complement through the classical, alternative, or lectin pathways. Complement-mediated killing was dependent on IgG and IgM for smooth and on IgG for rough M. abscessus. Both morphotypes were recognized by Complement Receptor 3 (CD11b), but not CR1 (CD35), and in a carbohydrate- and calcium-dependent manner. These data suggest the smooth-to-rough adaptation changes complement recognition of M. abscessus and that complement is an important factor for M. abscessus infection.

4.
J Wildl Dis ; 48(1): 56-67, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22247374

RESUMO

Increased overlap between humans and wildlife populations has increased the risk for novel disease emergence. Detecting contacts with a high risk for transmission of pathogens requires the identification of dependable measures of microbial exchange. We evaluated antibiotic resistance as a molecular marker for the intensity of human-wildlife microbial connectivity in the Galápagos Islands. We isolated Escherichia coli and Salmonella enterica from the feces of land iguanas (Conolophus sp.), marine iguanas (Amblyrhynchus cristatus), giant tortoises (Geochelone nigra), and seawater, and tested these bacteria with the use of the disk diffusion method for resistance to 10 antibiotics. Antibiotic-resistant bacteria were found in reptile feces from two tourism sites (Isla Plaza Sur and La Galapaguera on Isla San Cristóbal) and from seawater close to a public use beach near Puerto Baquerizo Moreno on Isla San Cristóbal. No resistance was detected at two protected beaches on more isolated islands (El Miedo on Isla Santa Fe and Cape Douglas on Isla Fernandina) and at a coastal tourism site (La Lobería on Isla San Cristóbal). Eighteen E. coli isolates from three locations, all sites relatively proximate to a port town, were resistant to ampicillin, doxycycline, tetracycline, and trimethoprin/sulfamethoxazole. In contrast, only five S. enterica isolates showed a mild decrease in susceptibility to doxycycline and tetracycline from these same sites (i.e., an intermediate resistance phenotype), but no clinical resistance was detected in this bacterial species. These findings suggest that reptiles living in closer proximity to humans potentially have higher exposure to bacteria of human origin; however, it is not clear from this study to what extent this potential exposure translates to ongoing exchange of bacterial strains or genetic traits. Resistance patterns and bacterial exchange in this system warrant further investigation to understand better how human associations influence disease risk in endemic Galápagos wildlife.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/isolamento & purificação , Iguanas/microbiologia , Salmonella enterica/isolamento & purificação , Tartarugas/microbiologia , Animais , Animais Selvagens/microbiologia , Portador Sadio/microbiologia , Portador Sadio/veterinária , Equador/epidemiologia , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/transmissão , Infecções por Escherichia coli/veterinária , Fezes/microbiologia , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana/veterinária , Medição de Risco , Salmonelose Animal/tratamento farmacológico , Salmonelose Animal/epidemiologia , Salmonelose Animal/transmissão , Salmonella enterica/efeitos dos fármacos , Zoonoses
5.
ISME J ; 5(9): 1461-70, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21451584

RESUMO

Herbivorous reptiles depend on complex gut microbial communities to effectively degrade dietary polysaccharides. The composition of these fermentative communities may vary based on dietary differences. To explore the role of diet in shaping gut microbial communities, we evaluated the fecal samples from two related host species--the algae-consuming marine iguana (Amblyrhynchus cristatus) and land iguanas (LI) (genus Conolophus) that consume terrestrial vegetation. Marine and LI fecal samples were collected from different islands in the Galápagos archipelago. High-throughput 16S rRNA-based pyrosequencing was used to provide a comparative analysis of fecal microbial diversity. At the phylum level, the fecal microbial community in iguanas was predominated by Firmicutes (69.5±7.9%) and Bacteroidetes (6.2±2.8%), as well as unclassified Bacteria (20.6±8.6%), suggesting that a large portion of iguana fecal microbiota is novel and could be involved in currently unknown functions. Host species differed in the abundance of specific bacterial groups. Bacteroides spp., Lachnospiraceae and Clostridiaceae were significantly more abundant in the marine iguanas (MI) (P-value>1E-9). In contrast, Ruminococcaceae were present at >5-fold higher abundance in the LI than MI (P-value>6E-14). Archaea were only detected in the LI. The number of operational taxonomic units (OTUs) in the LI (356-896 OTUs) was >2-fold higher than in the MI (112-567 OTUs), and this increase in OTU diversity could be related to the complexity of the resident bacterial population and their gene repertoire required to breakdown the recalcitrant polysaccharides prevalent in terrestrial plants. Our findings suggest that dietary differences contribute to gut microbial community differentiation in herbivorous lizards. Most importantly, this study provides a better understanding of the microbial diversity in the iguana gut; therefore facilitating future efforts to discover novel bacterial-associated enzymes that can effectively breakdown a wide variety of complex polysaccharides.


Assuntos
Bactérias/classificação , Fezes/microbiologia , Iguanas/microbiologia , Animais , Bactérias/genética , DNA Bacteriano/análise , DNA Bacteriano/genética , Carboidratos da Dieta , Equador , Trato Gastrointestinal/microbiologia , Filogenia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA