Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 104(5): 575-581, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32166333

RESUMO

Intensive agricultural and livestock activities demand high pesticide use and, consequently, contaminants reach aquatic ecosystems. In the lower Jacuí River, southern Brazil, there is a lack of knowledge about pesticide residues in water samples and the biochemical responses in native fish species. Thus, this study aimed to estimate the influence of pesticide residues and water parameters to biomarker responses in the native fish Astyanax spp. We performed seasonal biomonitoring in 2017 with water samples and fish collections. Biomarkers of oxidative stress, antioxidants, biotransformation, and neurotoxicity were analyzed in fish tissues. Fourteen pesticide residues were detected; they presented correlations with detoxification enzyme and oxidative stress biomarkers. These data indicate that most of variations can be related to the pesticide presence in water indicating high aquatic pollution in this place.


Assuntos
Characidae/metabolismo , Monitoramento Ambiental/métodos , Praguicidas/análise , Rios/química , Poluentes Químicos da Água/análise , Qualidade da Água/normas , Agricultura , Animais , Biomarcadores/metabolismo , Brasil , Ecossistema , Estresse Oxidativo/efeitos dos fármacos , Praguicidas/metabolismo , Poluentes Químicos da Água/metabolismo
2.
Chemosphere ; 191: 876-885, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29107229

RESUMO

Cropping systems based on intensive land use and continuous application of agricultural chemicals inflict a threat to aquatic organisms since these substances will inevitably be carried in to water bodies where they can accumulate, particularly in lentic sites. Pesticides exposure in aquatic animals can cause changes that can be quantified through biomarkers. Thus, this study aimed to investigate the effects of season on oxidative stress and neurotoxicity biomarkers in Loricariichthys anus from a subtropical reservoir surrounded by agricultural areas in southern Brazil. Ten armored catfish were collected from six sites in February and August 2016. Pesticides present in the water, sediment and muscle were identified and quantified. No pesticides were detected either in sediment nor in muscle. During the winter, the water contained atrazine, imidacloprid, simazine, azoxystrobin, and propoxur; however, in summer, only atrazine was present in the water. In the winter, there was an increase in the hepatic GST activity and in GPx that kept lipid peroxidation (TBARS) constant and, in the summer, there was an increase in metallothioneins levels. In the gills, variables related to summer were possibly responsible for the elevation of GST, GPx and TBARS; during the winter, there was greater carbonylation of proteins. In the winter, the increased AChE activity in brain and muscle tissue was related to carbonylation of proteins in brain. Although the amount of pesticides detected in the water was low, chronic exposure in addition to environmental variations can cause direct and indirect effects on L. anus population.


Assuntos
Peixes-Gato/metabolismo , Monitoramento Ambiental/métodos , Estações do Ano , Poluentes Químicos da Água/toxicidade , Agroquímicos/toxicidade , Animais , Biomarcadores/análise , Brasil , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Praguicidas/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA