Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 80(10): 4853-4862, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38801197

RESUMO

BACKGROUND: Chrysodeixis includens (Walker) and Rachiplusia nu (Guenée) are major Plusiinae pests of soybean in the Southern Cone region of South America. In recent decades, C. includens was the main defoliator of soybean in Brazil, but from 2021 onwards, R. nu emerged as an important soybean pest in various regions of the country. Here, we characterize the differential susceptibility and resistance to insecticides in these Plusiinae pests from two soybean regions of Brazil. RESULTS: Except for spinetoram and chlorfenapyr (comparable lethality against both species) and a Bt-based biopesticide (more lethal for C. includens), the tested insecticides showed higher lethality against R. nu than against C. includens, but populations of the same species, even separated by long distances, presented similar resistance levels. For both species, the 90% lethal concentration (LC90) values of most insecticides were higher than the field-recommended dose. Nevertheless, the field-recommended doses of spinetoram, metaflumizone, emamectin benzoate, cyclaniliprole and chlorfenapyr showed comparable control efficacy against both species, whereas indoxacarb, chlorantraniliprole, flubendiamide, teflubenzuron and chlorfluazuron were more lethal for R. nu, and methoxyfenozide and the Bt-based insecticide were more lethal for C. includens. Thiodicarb, methomyl and lambda-cyhalothrin showed low lethality against both species. CONCLUSIONS: Large interspecific differences in the susceptibility to insecticides was found in major Plusiinae pests of soybean in Brazil. Furthermore, variations in susceptibility to insecticides occurred consistently among species and populations, regardless of the collection site and thus despite unequal temporal and spatial exposure to insecticides. These results demonstrate that accurate species identification is essential for effective control of Plusiinae in soybean. © 2024 Society of Chemical Industry.


Assuntos
Resistência a Inseticidas , Inseticidas , Mariposas , Animais , Brasil , Mariposas/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Inseticidas/farmacologia , Larva/crescimento & desenvolvimento , Larva/efeitos dos fármacos , Glycine max
2.
Insects ; 14(9)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37754734

RESUMO

An increase in Spodoptera species was reported in Bt soybean fields expressing Cry1Ac insecticidal proteins in Brazil, requiring additional management with chemical insecticides. Here, we evaluated the dose effects of flubendiamide and thiodicarb on Spodoptera cosmioides (Walker, 1858), Spodoptera eridania (Stoll, 1782), Spodoptera albula (Walker, 1857) and Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) that survived on MON 87751 × MON 87708 × MON 87701 × MON 89788, expressing Cry1A.105, Cry2Ab2 and Cry1Ac; MON 87701 × MON 89788 soybean, expressing Cry1Ac; and non-Bt soybean. On unsprayed Cry1A.105/Cry2Ab2/Cry1Ac soybean, only S. frugiperda showed ~60% mortality after 10 d, whereas S. cosmioides, S. eridania and S. albula showed >81% mortality. The surviving larvae of all species on this Bt soybean showed >80% mortality when exposed to the field label dose of flubendiamide (70 mL/ha) or thiodicarb (400 g/ha) or at 50% of these doses. In contrast, all four species had <25% and <19% mortality on Cry1Ac and non-Bt soybean, respectively. The surviving S. cosmioides, S. eridania and S. albula on these soybean types presented >83% mortality after exposure to both dose levels of flubendiamide and thiodicarb. Some S. frugiperda larvae surviving on Cry1Ac and non-Bt soybean sprayed with a 50% dose of either insecticide developed into adults. However, the L1 larvae developing on Cry1Ac soybean leaves sprayed with flubendiamide and the L2 larvae on this soybean sprayed with thiodicarb had a prolonged immature stage, and the females displayed lower fecundity, which are likely to impact S. frugiperda population growth on soybean.

3.
J Econ Entomol ; 115(2): 631-636, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35244181

RESUMO

This study evaluated intra- and interspecific variation regarding the susceptibility to insecticides of key pentatomid pests of soybean (Glycine max L.) and maize (Zea mays L.) crops in Brazil. To perform bioassays, populations of Euschistus heros (F.), Diceraeus (=Dichelops) furcatus (F.), Nezara viridula (L.), and Piezodorus guildinii (Westwood) (Hemiptera: Pentatomidae) were collected in soybean fields in Southern Brazil during the 2020/2021 crop season. Then, stink bugs were exposed to doses of commercial insecticides commonly applied for its control in dip-test bioassays using fresh green bean pods. In general, all stink bug species and populations studied were susceptible to acephate, acetamiprid + bifenthrin, imidacloprid + bifenthrin, and ethiprole, with mortality rates > 80%. Most populations of E. heros and D. furcatus, considered the main stink bugs that attack soybean and maize, respectively, presented low or intermediate susceptibility to acetamiprid + α-cypermethrin, ζ-cypermethrin + bifenthrin, dinotefuran + λ-cyhalothrin, and bifenthrin + carbosulfan. Except for bifenthrin + carbosulfan (mortality < 57%), secondary stink bugs species that attack soybean (N. viridula and P. guildinii) showed pronounced susceptibility to all insecticides tested, with mortality rates > 70%. In summary, the populations of E. heros and D. furcatus showed diminished susceptibility to various insecticides formulated with the mixture of neonicotinoids + pyrethroids, whereas N. viridula and P. guildinii were most susceptible to the insecticides evaluated. The implications of these findings to integrated and resistance management programs are discussed.


Assuntos
Heterópteros , Inseticidas , Animais , Brasil , Glycine max , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA