Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189553

RESUMO

BACKGROUND: Epicoccum sorghinum is a pathogenic fungus that causes leaf spot in a wide range of plants, including maize, and synthesizes the mycotoxin tenuazonic acid (TEA), which is carcinogenic. Despite the relevant economic and yield losses caused by E. sorghinum worldwide, methods for the control of this pathogen are lacking. RESULTS: In this work, the efficacy of Bacillus-produced dipicolinic acid (DPA) for control of E. sorghinum was evaluated using in vitro and in vivo assays, and compared with the efficacy of three commercial fungicides, including carbendazim, prochloraz, and thiram. DPA inhibited E. sorghinum mycelial growth, and conidia germination, and produced important alterations in E. sorghinum hyphae. Interestingly, 10 mM DPA reduced TEA biosynthesis by 86.6%. Although DPA rapidly degraded on maize leaves, 10 mM DPA showed higher preventive (67.4% lesion length inhibition) and inhibitory (89.5% lesion length inhibition) efficacies for the control of E. sorghinum on maize leaves compared to the commercial fungicides. CONCLUSIONS: Collectively, this study presents the first method for the control of E. sorghinum on maize and demonstrates that DPA application is a suitable approach to inhibit E. sorghinum symptoms in plants and TEA biosynthesis. © 2024 Society of Chemical Industry.

2.
IEEE J Biomed Health Inform ; 26(6): 2425-2434, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34077376

RESUMO

Lignocellulose is an abundant xylose-containing biomass found in agricultural wastes, and has arisen as a suitable alternative to fossil fuels for the production of bioethanol. Although Saccharomyces cerevisiae has been thoroughly used for the production of bioethanol, its potential to utilize lignocellulose remains poorly understood. In this work, xylose-metabolic genes of Pichia stipitis and Candida tropicalis, under the control of different promoters, were introduced into S. cerevisiae. RNA-seq analysis was use to examine the response of S. cerevisiae metabolism to the introduction of xylose-metabolic genes. The use of the PGK1 promoter to drive xylitol dehydrogenase (XDH) expression, instead of the TEF1 promoter, improved xylose utilization in "XR-pXDH" strain by overexpressing xylose reductase (XR) and XDH form C. tropicalis, enhancing the production of xylitol (13.66 ± 0.54 g/L after 6 days fermentation). Overexpression of xylulokinase and XR/XDH from P. stipitis remarkably decreased xylitol accumulation (1.13 ± 0.06 g/L and 0.89 ± 0.04 g/L xylitol, respectively) and increased ethanol production (196.14 % and 148.50 % increases during the xylose utilization stage, respectively), in comparison with the results of XR-pXDH. This result may be produced due to the enhanced xylose transport, Embden-Meyerhof and pentose phosphate pathways, as well as alleviated oxidative stress. The low xylose consumption rate in these recombinant as well as alleviated strains comparing with P. stipitis and C. tropicalis may be explained by the insufficient supplementation of NADPH and NAD +. The results obtained in this work provide new insights on the potential utilization of xylose using bioengineered S. cerevisiae strains.


Assuntos
Saccharomyces cerevisiae , Xilose , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Candida/genética , Candida/metabolismo , D-Xilulose Redutase/genética , D-Xilulose Redutase/metabolismo , Fermentação , Pichia/genética , Pichia/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilitol/metabolismo , Xilose/metabolismo
3.
Front Oncol ; 11: 678474, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026654

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a significant cause of patient morbidity. The exactly pathobiological features of this condition has yet to be completely elucidated. METHODS: Breast cancer data obtained from The Cancer Genome Atlas (TCGA) database were evaluated for lncRNA SNHG6 expression. Normal human breast epithelial cell line (MCF-10A) and other breast cancer cell lines (BT-549, MDA-MB-231, Hs 578t, ZR-75-30, SK-BR-3, MCF-7) were also assessed for lncRNA SNHG6 expressions. Cellular proliferative ability was evaluated with colony formation and CCK-8 assays. The ability of cells to migrate was scrutinized with the wound healing and Boyden chamber cell migration assays. qRT-PCR enabled for detection of lncRNA SNHG6, miR-125b-5p and BMPR1B mRNA expressions. Protein BMPR1B expressions were further assessed using Western Blotting. Direct binding sites between transcripts were determined using dual-luciferase reporter assays. We also constructed a xenograft mouse model to further dissect the vivo implications of lncRNA SNHG6. Ki-67 and c-Caspase-3 expressions were detected using immunohistochemistry staining. RESULTS: Breast cancer cell lines demonstrated higher lncRNA SNHG6 expressions, particularly TNBC cell lines, in contrast to normal breast epithelial cell lines. This finding coincided with those noted on analysis of TCGA breast cancer data. lncRNA SNHG6 knockdown inhibited TNBC cell proliferation, migration, while promoted cell apoptosis. Furthermore, suppressed lncRNA SNHG6 expressions resulted in lower tumor weights and volumes in a xenograft mouse model, as evidenced by Ki-67 and c-Caspase-3 expression profiles in tumor tissues. miR-125b-5p and lncRNA SNHG6/BMPR1B both possessed direct binding sites for each other which was validated utilizing a dual-luciferase reporter assay. Decreasing lncRNA SNHG6 expression in TNBC cells upregulated miR-125b-5p expression. Another side, inhibiting miR-125b-5p upregulated BMPR1B expression in these cells. Moreover, knocking down lncRNA SNHG6 downregulated BMPR1B expression in TNBC cells, and the finding was rescued in cells which were exposed to miR-125b-5p inhibitor. Downregulating miR-125b-5p mitigated the effect of suppressing lncRNA SNHG6 on TNBC cell proliferation, migration, and apoptosis. CONCLUSION: Downregulation of lncRNA SNHG6 could inhibit TNBC cell proliferative, migratory capabilities and promote apoptosis capability, likely through modulation of the miR-125b-5p/BMPR1B axis. This axis may be targeted in formulating new therapies for TNBC.

4.
Anat Rec (Hoboken) ; 299(6): 741-7, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26917449

RESUMO

Vascular endothelial growth factor-C (VEGF-C) is a key regulator in lymphangiogenesis, and is overexpressed in various malignancies. Integrin α4ß1, a new member of the VEGF-C/VEGF receptor pathway, was found to be overexpressed in melanoma tumors. However, little is known regarding the potential role of integrin α4ß1 in lymphangiogenesis and other solid tumors. The aim of this study was to investigate the expression patterns of integrin α4 and VEGF-C in relation to lymphangiogenesis and clinicopathological parameters in human colon cancer. The expression of integrin α4, VEGF-C, and VEGFR-3 was assessed in 71 human colon cancer tissues and 30 paracancerous normal tissues by immunohistochemical staining. Lymphatic microvessel density (LMVD) was measured after D2-40-labeling, and the correlations among different factors were statistically analyzed. The expression of integrin α4, VEGF-C, VEGFR-3, and LMVD was higher in colon cancer tissues compared with the normal paracancerous colon tissues. There was a positive correlation between the expression of integrin α4 and VEGF-C. Integrin α4 and VEGF-C were significantly associated with the clinicopathological parameters (LMVD, Duke's stage, and lymph node metastasis). Kaplan-Meier analyses indicated that patients with high integrin α4 or VEGF-C expression had significantly shorter overall survival and tumor-free survival time. Multivariate analyses suggested that integrin α4 and VEGF-C may serve as independent prognostic factors for human colon cancer. Both integrin α4 and VEGF-C are involved in lymphangiogenesis and lymphatic metastasis. Our results demonstrated that integrin α4 is a novel prognostic indicator for human colon cancer. Anat Rec, 299:741-747, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Neoplasias do Colo/patologia , Integrina alfa4/metabolismo , Linfangiogênese/fisiologia , Metástase Linfática/patologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias do Colo/metabolismo , Neoplasias do Colo/mortalidade , Feminino , Humanos , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Masculino , Microvasos/metabolismo , Microvasos/patologia , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida , Regulação para Cima , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA