Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 678(Pt B): 487-496, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39260297

RESUMO

Water is considered an effective microwave absorber due to its high transmittance and frequency-dispersive dielectric constant, yet it is challenging to form it into a stable state as an absorber. Herein, we developed a water-containing microwave absorber using chemical vapor deposition (CVD), namely, the bifunctional carbon/NaCl multi-interfaces hybrid with excellent water harvesting and microwave absorption performance. Carbon/NaCl exhibits remarkable water harvesting abilities from air, exceeding 210 % of its weight in 12 h. The development of the hydrophilic/hydrophobic heterojunction interface is responsible for this outstanding performance. Additionally, the interfacial polarization provided by carbon/NaCl, along with the dipole polarization induced by the internally captured water and defects, enhances its microwave absorption. The carbon/NaCl hybrid achieved a minimum reflection loss (RLmin) of -69.62 dB at 17.1 GHz with a thickness of 2.13 mm, and a maximum effective absorption bandwidth (EABmax) of 6.74 GHz at a thickness of 2.5 mm. Compared with raw NaCl (RLmin of -24.5 dB, EABmax of 3.88 GHz), the RLmin and EABmax values of the absorber increased by approximately 2.85 and 1.74 times. These results highlight the potential for bifunctional carbon/NaCl hybrid in applications within extreme environments, presenting a promising avenue for further research and development.

2.
Animals (Basel) ; 10(4)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326606

RESUMO

Copy number variation (CNV) is a type of genomic variation with an important effect on animal phenotype. We found that the PIGY gene contains a 3600 bp copy number variation (CNV) region located in chromosome 6 of sheep (Oar_v4.0 36,121,601-36,125,200 bp). This region overlaps with multiple quantitative trait loci related to phenotypes like muscle density and carcass weight. Therefore, in this study, the copy number variation of the PIGY gene was screened in three Chinese sheep breeds, namely, Chaka sheep (CKS, May of 2018, Wulan County, Qinghai Province, China), Hu sheep (HS, May of 2015, Mengjin County, Henan Province, China), and small-tailed Han sheep (STHS, May of 2016, Yongjing, Gansu Province, China). Association analyses were performed on the presence of CNV and sheep body size traits. We used real-time quantitative PCR (qPCR) to detect the CNV for association analysis. According to the results, the loss-type CNV was more common than other types in the three breeds (global average: loss = 61.5%, normal = 17.5%, and gain = 21.0%). The association analysis also showed significant effects of the PIGY gene CNV on body weight, chest circumference, and circumference of the cannon bone of sheep. Sheep with gain-type CNV had better growth traits than those with other types. The results indicate a clear relationship between the PIGY gene CNV and growth traits of sheep, suggesting the use of CNV as a new molecular breeding marker.

3.
ACS Nano ; 6(10): 8611-9, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22963353

RESUMO

The facile preparation of high-purity carbon nanofibers (CNFs) remains challenging due to the high complexity and low controllability in reaction. A novel approach using gas-induced formation of Cu crystals to control the growth of CNFs is developed in this study. By adjusting the atmospheric composition, controllable preparation of Cu nanoparticles (NPs) with specific size and shape is achieved, and they are further used as a catalyst for the growth of straight or helical CNFs with good selectivity and high yield. The preparation of Cu NPs and the formation of CNFs are completed by a one-step process. The inducing effect of N(2), Ar, H(2), and C(2)H(2) on the formation of Cu NPs is systematically investigated through a combined experimental and computational approach. The morphology of CNFs obtained under different conditions is rationalized in terms of Cu NP and CNF growth models. The results suggest that the shapes of CNFs, namely, straight or helical, depend closely on the size, shape, and facet activity of Cu NPs, while such a gas-inducing method offers a simple way to control the formation of Cu NPs.


Assuntos
Cobre/química , Cristalização/métodos , Gases/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA