Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.136
Filtrar
1.
J Photochem Photobiol B ; 260: 113035, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39303620

RESUMO

BACKGROUND: Hospital water systems represent critical environments for the transmission of pathogens, including multidrug-resistant strains like mucoid Pseudomonas aeruginosa (M-PA). Conventional disinfection methods often struggle to eradicate these pathogens effectively, highlighting the need for innovative approaches. OBJECTIVE: This study aimed to develop an enhanced photodynamic disinfection strategy targeting M-PA from hospital water systems, using curcumin-mediated photodynamic inactivation (PDI) with specific spectral range. METHODS: An M-PA strain isolated from hospital water was subjected to photodynamic treatment using curcumin as the photosensitizer. The efficacy of different wavelengths of light and varying concentrations of curcumin, with and without Tris-EDTA adjuvants, was evaluated through bacterial enumeration, ROS level measurements, transcriptome analysis, and assessment of virulence factors and biofilm formation. In vivo experiments utilizing a DSS-induced colitis mouse model assessed the protective effects of the photodynamic treatment against M-PA infection. RESULTS: Our findings demonstrated that the combination of curcumin-mediated PDI with specific spectral range effectively reduced M-PA counts in water, particularly when supplemented with Tris-EDTA. Transcriptome analysis revealed significant downregulation of virulence-related genes under sublethal photodynamic conditions. Furthermore, photodynamic treatment inhibited pyocyanin production and biofilm formation in M-PA, highlighting its potential to disrupt pathogenicity mechanisms. In vivo experiments showed that PDI attenuated M-PA-induced colitis in mice, indicating its protective efficacy. CONCLUSION: This study presents a promising photodynamic disinfection strategy for combating M-PA from hospital water. By optimizing curcumin-mediated PDI with specific spectral range and adjuvants, our approach demonstrates substantial efficacy in reducing bacterial counts, inhibiting virulence factors, and preventing M-PA-associated colitis.

2.
J Food Sci ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39295436

RESUMO

The study of visualization of impact damage of fruit under different thicknesses of buffer materials can provide more efficient transportation and packaging solutions, and thus the economic losses caused by fruit damage can be reduced. Pearl cotton (EPE) is commonly used as a buffer material in the market, and the impact damage behavior of honey peaches under different thicknesses of EPE buffer material was studied by using the finite element method. Firstly, the damage area, maximum contact force and damage volume during the collision of honey peaches with EPE materials of different thicknesses (2, 4, and 6 mm) were obtained by the single pendulum device, and then the Modulus of elasticity and Poisson's ratio of peach flesh were obtained by compression test. Finally, the finite element model of honey peach was built and the collision simulations were performed. The results of the study showed that the values of mechanical parameters of honey peach decreased with the increase of the thickness of the buffer material. When the collision angle was below 60°, the honey peaches were not damaged in the collision with the EPE material with a thickness of 4 mm or more. By comparing the tested values with the simulated values, it was found that the errors of the damage area, damage volume and maximum contact force were less than 19.71%, 26.82%, and 25.88%, respectively. The study not only proves the possibility of the finite element method in the quantitative prediction of honey peaches damage but also provides rational support for the packaging design of honey peaches.

3.
Pediatr Blood Cancer ; : e31332, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289866

RESUMO

A 5-year-old female diagnosed with severe hemophilia B began experiencing frequent muscular and joint bleeds at 19 months old. Molecular studies, including Sanger sequencing, Giemsa banding, human androgen receptor (HUMARA) assay, array-based comparative genomic hybridization (aCGH), whole-exome sequencing (WES), and multiplex ligation-dependent probe amplification (MLPA), revealed a heterozygous factor IX (F9) intron 3 substitution (c.277+1G>T) inherited from her mother and a de novo heterozygous 441 kb deletion in the Xq28 region, which flanked intron 22 homologous regions 1 (int22h1) and 2 (int22h2). This rare genetic profile explains her severe phenotype and guides hereditary consultation for family planning.

4.
Biomark Res ; 12(1): 113, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334513

RESUMO

Novel neoadjuvant immunotherapy combined with chemotherapy (neoICT) has improved outcomes for patients with esophageal squamous-cell carcinoma (ESCC), but challenges persist in low response rates and therapy resistance. Little is known about the intra-tumoral heterogeneity in the ESCC tumor microenvironment (TME) that underlies differential responses to neoadjuvant therapy. We applied single-cell RNA sequencing (scRNA-seq) profiling and multiplexed immunofluorescence staining to thoroughly decipher the TME in ESCC specimens from a neoadjuvant anti-PD1 combination therapy clinical trial. The cancer-associated fibroblasts (CAFs) population showed the significant alteration in abundance following neoadjuvant therapy. Specifically, IL6 + CCL2 + immunomodulatory CAFs and a novel CD248 + mechanoresponsive CAFs subset exhibited increasing infiltration. Mechanistically, CD248 + mechanoresponsive CAFs approached and lined the tumor nest to physically block the infiltration of CD8 + T cells and drug delivery, while IL6 + CCL2 + immunomodulatory CAFs induced therapeutic resistance with distinct IL-6 expression. Among patients treated with neoICT, we observed prominent CAF-T cell interactions. In particular, the NECTIN2-TIGIT ligand-receptor pair was enriched in treated samples, and TIGIT was identified as the major inhibitory checkpoint of T cells. Our findings demonstrate distinct alterations in TME constituent responses to neoadjuvant immunotherapy and identify functional phenotypes of CAFs associated with unfavorable therapeutic responses in patients. This provides potential targets to enhance responses to neoadjuvant therapy in ESCC.

5.
Poult Sci ; 103(11): 104185, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39244783

RESUMO

The production performance of laying hens is influenced by various environmental factors within the henhouse. The intricate interactions among these factors make the impact process highly complicated. The exact relationships between production performance and environmental variables are still not well understood. In this study, we measured the production performance of laying hens and various environmental variables across different parts of the henhouse, evaluated the weight of each environmental variable, and constructed a laying rate prediction model. Results displayed that body weight, laying rate, egg weight and eggshell thickness of hens decrease gradually from WCA to FA (P < 0.05). Serum levels of FSH and LH, as well as antibody level of H5 Re-13, gradually decrease from WCA to FA (P < 0.05). Moreover, the values for temperature (T), temperature-humidity index (THI), air velocity (AV), carbon dioxide (CO2), and particulate matter (PM2.5) gradually increase from WCA to FA (P < 0.05). Conversely, the relative humidity (RH) value gradually decreases from FA to WCA (P < 0.05). Additionally, the weights of the environmental variables, determined using a combination of the grey relational analysis (GRA) and analytic hierarchy process (AHP), were as follows in descending order: RH, THI, T, light intensity (LI), AV, PM2.5, NH3, and CO2. When the number of decision trees in the laying rate prediction model was set to 2,500, the results displayed a high level of agreement between the model's predictions and the observed outcomes. The model's performance evaluation yielded an R2 value of 0.89995 for the test set, suggesting strong predictive effects. In conclusion, the current study revealed significant differences in both the production performance of laying hens and the environmental variables across different parts of the henhouse. Furthermore, the study demonstrated that different environmental factors have distinct impacts on laying rate, with humidity and temperature identified as the primary factors. Finally, a multi-variable prediction model was constructed, exhibiting high accuracy in predicting laying rate.


Assuntos
Criação de Animais Domésticos , Galinhas , Abrigo para Animais , Animais , Galinhas/fisiologia , Feminino , Criação de Animais Domésticos/métodos , Reprodução/fisiologia , Meio Ambiente
6.
Nano Lett ; 24(39): 12333-12342, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39302876

RESUMO

Artificial ionic sensory systems, bridging the divide between biological systems and electronics, mimic human skin functions but face critical challenges with biocompatibility, comfort, signal stability, and simplifying packaging. Here, we present a simple and permeable skin-interfaced iontronic mechanosensing (SIIM) architecture that integrates human skin as natural ionic material and hierarchically porous MXene-fiber composite membranes as sensing electrodes. The SIIM system eliminates complex ionic material design and multilayer matrix, exhibiting ultrahigh pressure sensitivities (5.4 kPa-1, <75 Pa), a low detection limit (6 Pa), excellent output stability along with high permeability to minimize the impact of sweating on sensing. The noncytotoxic nature of SIIM electrodes ensures excellent biocompatibility (>97% cell coincubational viability), facilitating long-term wearability and high biosafety. Furthermore, the scalable SIIM configuration integrated with matrix smart gloves, effectively monitors human physical movements. This SIIM-based sensor with marked sensing capabilities, structural simplicity, and scalability, holds promising potential in diverse wearable applications.


Assuntos
Materiais Biocompatíveis , Pele , Dispositivos Eletrônicos Vestíveis , Humanos , Materiais Biocompatíveis/química , Membranas Artificiais , Eletrodos , Permeabilidade , Técnicas Biossensoriais/instrumentação , Porosidade
7.
J Hazard Mater ; 480: 135937, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39342847

RESUMO

Fusarium mycotoxins are of great concern because they are the most common food-borne mycotoxins and environmental contaminants worldwide. Fusaric acid (FA), Deoxynivalenol (DON), Zearalenone (ZEA), T-2 toxin (T-2), and Fumonisin B1 (FB1) are important Fusarium toxins contaminating feeds and food and can cause serious health problems. FA can synergize with some other Fusarium toxins to enhance overall toxicity. However, the underlying molecular mechanism remains poorly understood. In this study, our CRISPR screening revealed Malate dehydrogenase 2 (MDH2) and Pyruvate dehydrogenase E1 subunit beta (PDHB) are the key genes for FA-induced cell death. Pathways associated with mitochondrial function, notably the TCA cycle, play a significant role in FA cytotoxicity. We found that MDH2 and PDHB depletion reduced FA-induced cell death, ROS accumulation, and the expression of caspase-3 and HIF-1α. The cell viability assays and flow cytometry demonstrated that MDH2 knockout but not PDHB decreased DON, ZEA, T-2, and FB1-induced cytotoxicity, apoptosis, and ROS accumulation. MDH2 inhibitor LW6 also decreased DON, ZEA, T-2, and FB1-induced toxicity. This suggested that MDH2, but not PDHB, is a common regulator of broad-spectrum Fusarium toxin (FA, DON, ZEA, T-2, and FB1)-induced cell death. Our work provides new avenues for the treatment of Fusarium toxin toxicity.

8.
Inorg Chem ; 63(38): 17478-17487, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39229693

RESUMO

Metalo hydrogen-bonded organic frameworks (MHOFs) have received growing interest in designing crystalline functional materials. However, reports on bifunctional MHOFs showing magnetic and proton-conductive properties are extremely limited and their design is challenging. Herein, we investigated the magnetic and proton-conductive properties of two sulfonated CoHOF and MnHOF, {M(H2O)2(abs)2}n (M = Co2+ and Mn2+, Habs = 4-aminoazobenzene-4'-sulfonic anion), constructed by coordination chains. The supramolecular frameworks sustained by H bonds between -SO3- and coordinated water show directional ladder-type H bonds with hydrophilic nanochannels, leading to high proton conduction with exceptionally high conductivity around 10-2 S cm-1 at 100 °C under 97% relative humidity. In particular, the maximum σ value of CoHOF, 2.11 × 10-2 S cm-1, recorded the highest value among the reported proton-conducting materials showing slow magnetic relaxation. Meanwhile, the molecular structure of organosulfonate enables the magnetic isolation of high-spin Co2+ and Mn2+ centers in the frameworks. Magnetic measurements indicated that the MHOFs show field-induced single-ion magnet (SIM) properties, making these compounds rare magnetic-proton-conductive MHOFs. The work provides not only two unique MHOFs with SIM behavior and high proton conduction performance but also avenues for designing stable bifunctional MHOFs via a coordination chain approach.

9.
Anal Chem ; 96(33): 13482-13493, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39094103

RESUMO

Fibrinolytic activity assay is particularly important for the detection, diagnosis, and treatment of cardiovascular disease and the development of fibrinolytic drugs. A novel efficacious strategy for real-time and label-free dynamic detection of fibrinolytic activity based on ordered porous layer interferometry (OPLI) was developed. Fibrin or a mixture of fibrin and plasminogen (Plg) was loaded into the highly ordered silica colloidal crystal (SCC) film scaffold to construct a fibrinolytic response interference layer to measure fibrinolytic activity with different mechanisms of action. Fibrinolytic enzyme-triggered fibrinolysis led to the migration of interference fringes in the interferogram, which could be represented by optical thickness changes (ΔOT) tracked in real time by the OPLI system. The morphology and optical property of the fibrinolytic response interference layer were characterized, and the Plg content in the fibrinolytic response interference layer and experimental parameters of the system were optimized. The method showed adequate sensitivity for the fibrinolytic activity of lumbrokinase and streptokinase, with wide linear ranges of 12-6000 and 10-2000 U/mL, respectively. Compared with the traditional fibrin plate method, it has a lower detection limit and higher linearity. The whole kinetic process of fibrinolysis by these two fibrinolytic drug models was recorded in real time, and the Michaelis constant and apparent kinetic parameters were calculated. Importantly, some other blood proteins were less interfering with this system, and it showed reliability in fibrin activity detection in real whole blood samples. This study established a better and more targeted research method of in vitro fibrinolysis and provided dynamic monitoring data for the analysis of fibrinolytic activity of whole blood.


Assuntos
Fibrina , Fibrinólise , Interferometria , Interferometria/métodos , Fibrinólise/efeitos dos fármacos , Fibrina/metabolismo , Fibrina/química , Humanos , Plasminogênio/metabolismo , Plasminogênio/análise , Estreptoquinase , Dióxido de Silício/química , Porosidade , Fibrinolíticos/farmacologia , Fibrinolíticos/química , Cinética
10.
Int Immunopharmacol ; 141: 112944, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153308

RESUMO

BACKGROUND: Sudden sensorineural hearing loss (SSNHL) is characterized by rapid, unexplained loss of hearing within a 72-hour period and exhibits a high incidence globally. Despite this, the outcomes of therapeutic interventions remain largely unpredictable, especially for those with profound hearing loss. Extracellular vesicles (EVs), nano-sized entities containing biological materials, are implicated in the development of numerous diseases. The specific relationship between EVs and both the severity and treatment effectiveness of SSNHL, however, is not well understood. METHODS: This study involved the analysis of medical records from the Department of Otolaryngology (September 1, 2020 - December 31, 2022) of patients diagnosed with SSNHL according to the 2015 Guidelines for Diagnosis and Treatment of Sudden Deafness in China. Peripheral blood samples from patients with various types of SSNHL before and after treatment were collected, alongside samples from healthy volunteers serving as controls. Plasma EVs were isolated using gel rejection chromatography and analyzed for concentration, marker presence, and morphology using Nanosight, Western blot, and transmission electron microscopy (TEM), respectively. Proteomics and miRNA assessments were conducted to identify differentially expressed proteins and miRNAs in the plasma EVs of SSNHL patients and healthy volunteers. Key proteins were further validated through Western blot analysis. Enzyme-linked immunosorbent assay (ELISA) was utilized to determine the levels of complement C3 in plasma EVs, and correlation analyses were performed with audiological data pre- and post-treatment. RESULTS: Plasma from SSNHL patients of varying types was collected and their EVs were successfully isolated and characterized. Proteomic analysis revealed that complement C3 levels in the plasma EVs of patients with profound SSNHL were significantly higher compared to healthy controls. Differential expression of miRNAs in plasma EVs and their related functions were also identified. The study found that the level of complement C3 in plasma EVs, but not the total plasma complement C3, positively correlated with the severity of SSNHL in patients exhibiting positive therapeutic responses, particularly in those with initially lower levels of EV-associated complement C3. After treatment, complement C3 level was decreased in patients with initially higher levels of EV-associated complement C3. No significant correlation was observed between changes in plasma EV-derived complement C3 levels and the degree of hearing loss in either responders or non-responders among patients with profound SSNHL. CONCLUSION: Differential profiles of proteins and miRNAs were identified in patients with profound SSNHL. Notably, plasma EV-derived complement C3 was linked to both the severity and early treatment effectiveness of patients with profound SSNHL.


Assuntos
Complemento C3 , Vesículas Extracelulares , Perda Auditiva Neurossensorial , Perda Auditiva Súbita , Humanos , Complemento C3/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Vesículas Extracelulares/metabolismo , Adulto , Perda Auditiva Neurossensorial/sangue , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Súbita/sangue , Perda Auditiva Súbita/terapia , Índice de Gravidade de Doença , Resultado do Tratamento , MicroRNAs/sangue , Idoso , Adulto Jovem , Biomarcadores/sangue , Proteômica
11.
Heliyon ; 10(15): e35235, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39165982

RESUMO

Introduction: Esophageal cancer is increasingly recognized as a significant global malignancy. The main pathological subtype of this cancer is esophageal squamous cell carcinoma (ESCC), which displays a higher degree of malignancy and a poorer prognosis. Reactive oxygen species (ROS) play a critical role in modulating the immune response to tumors, and understanding the regulation of ROS in ESCC could lead to novel and improved therapeutic strategies for ESCC patients. Methods: A consensus matrix derived from genes involved in the ROS pathway revealed two subtypes of ROS. These subtypes were categorized as ROS-active or ROS-suppressive based on their level of ROS activity. The heterogeneity among the different ROS subtypes was then explored from various perspectives, including gene function, immune response, genomic stability, and immunotherapy. In order to assess the prognosis and the potential benefits of immunotherapy, a ROS activity score (RAS) was developed using the identified ROS subtypes. In vitro experiments were performed to confirm the impact of core RAS genes on the proliferative activity of esophageal cancer cell lines. Results: Two distinctive subtypes of ROS were identified. The first subtype, referred to as ROS-active, exhibited elevated ROS activity, enhanced involvement in cancer-associated immune pathways, and increased infiltration of effector immune cells. The second subtype, named ROS-suppressive, demonstrated weaker ROS activity but displayed more pronounced dysregulation in the cell cycle and a denser extracellular matrix, indicating malignant characteristics. Genomic stability, particularly in terms of copy number variation (CNV) events, differed between the two ROS subtypes. By developing a RAS model, reliable risk assessment for overall survival (OS) in patients with ESCC was achieved, and the model demonstrated strong predictive capabilities in real-world immunotherapy cohorts. Moreover, the core gene LDLRAD1 within the RAS model was found to enhance proliferative activity in esophageal cancer cell lines. Conclusion: Based on the ROS pathway, we successfully identified two distinct subtypes in ESCC: the ROS-active subtype and the ROS-suppressive subtype. These subtypes were utilized to evaluate prognosis and the sensitivity to immunotherapy.

12.
J Affect Disord ; 365: 644-658, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147163

RESUMO

BACKGROUND: To evaluate the effects of different interventions on adolescent internet addiction, a meta-analysis and network meta-analysis were performed to determine the possible intervention effects of these interventions. METHODS: Computer searches of the China National Knowledge Network, Wanfang, VIP, EMBASE, PubMed, Web of Science, EBSCO, and Cochrane Library databases were performed. The relevant randomized controlled trials were designed to assess the effects of interventions on adolescent internet addiction. The retrieval period ranged from the establishment of the database to January 31, 2024. Literature screening, data extraction, and bias risk assessment were carried out independently by two researchers. CMA 3.3, Stata 17.0 software and Review Manager 5.3 were used for the data analysis. RESULTS: A total of 89 studies with 6876 samples were included. A traditional meta-analysis of 51 single interventions and controlled studies revealed that sports intervention, cognitive behavior therapy, family therapy, mindfulness intervention, attention bias training and group counseling significantly improved adolescent Internet addiction [standardized mean difference (SMD) = -1.75, 95 % CI (-2.07, -1.44), p < 0.01; I2 = 94 %] compared to no-treatment groups. A network meta-analysis showed that combined intervention (Sucra = 93.5) had the highest probability of being the best intervention for adolescent Internet addiction, and acupuncture interventions showed the most promise as a single intervention modality; however, due to the limited number of studies, we believe that sports intervention could be the most appropriate single intervention. DISCUSSION: The evidence provided by existing studies shows that compared with other single interventions, combined interventions have the greatest effect on adolescent IA, and sports may be the best single intervention. However, because of the limitations of sample size and quality of individual studies, the strength of the evidence still needs to be further verified by additional standardized and high-quality studies.


Assuntos
Transtorno de Adição à Internet , Esportes , Adolescente , Humanos , Terapia Cognitivo-Comportamental/métodos , Terapia Familiar/métodos , Transtorno de Adição à Internet/terapia , Atenção Plena/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto , Metanálise em Rede
13.
Poult Sci ; 103(10): 104013, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39098296

RESUMO

Feed efficiency (FE) is an important economic factor in poultry production, and feed conversion ratio (FCR) is one of the most widely used measures of FE. Factors associated with FCR include genetics, the environment, and other factors. However, the mechanisms responsible for FCR in chickens are still less well appreciated. In this study, we examined the pattern changes of FCR, then delved into understanding the mechanisms behind these variations from both genetic and environmental perspectives. Most interestingly, the FCR at the front section of henhouse exhibited the lowest value. Further investigation revealed that laying rate in the high FCR (HFCR) group was lower than that in the low FCR (LFCR) group (P < 0.05). Cortisol, total antioxidant capacity (TAOC), and IgG levels in the LFCR group were significantly lower than those in the HFCR group (P < 0.05), while BUN level was significantly higher than that in the HFCR group (P < 0.05). We identified a total of 67 and 10 differentially expressed genes (DEGs) associated with FCR in ovarian and small intestine tissues, respectively. Functional enrichment analysis of DEGs revealed that they might affect FCR by modulating genes associated with salivary secretion, ferroptosis, and mineral absorption. Moreover, values for relative humidity (RH), air velocity (AV), PM2.5, ammonia (NH3), and carbon dioxide (CO2) in the LFCR group were significantly lower than those in the HFCR group (P < 0.05). Conversely, value for light intensity (LI) in the LFCR group was significantly higher than that in the HFCR group (P < 0.05). Correlation analysis revealed a positive correlation between FCR and RH, AV, PM2.5, NH3, and CO2, and a negative correlation with LI. Finally, the FCR prediction model was successfully constructed based on multiple environmental variables using the random forest algorithm, providing a valuable tool for predicting FCR in chickens.


Assuntos
Galinhas , Animais , Galinhas/fisiologia , Galinhas/genética , Feminino , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Criação de Animais Domésticos/métodos
14.
Sci Data ; 11(1): 937, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198428

RESUMO

The planthopper Nilaparvata muiri is a sister species to N. lugens (Hemiptera: Delphacidae), a notorious insect pest in Asian rice fields. N. muiri and N. lugens have a different host preference despite the similarities in many biological features. To better understand the adaptive evolution of planthoppers, comprehensive genomic information on N. muiri and N. lugens are urgently needed. In this study, we used ultra-low input PacBio HiFi libraries and Hi-C sequencing technologies to assemble a reference genome of a single N. muiri at the chromosomal level. The genome size was determined to be 531.62 Mb with a contig N50 size of 2.47 Mb and scaffold N50 size of 38.37 Mb. Totally, 96.61% assembled sequences were anchored to the 15 pseudo-chromosomes. BUSCO analysis yielded an Insecta completeness score of 98.6%. A total of 22,057 protein-coding genes were annotated, and 168.16 Mb repetitive sequences occupying 31.63% of genome were pinpointed. The assembled genome is valuable for evolutionary and genetic studies of planthoppers, and may provide sights to pest control.


Assuntos
Genoma de Inseto , Hemípteros , Animais , Cromossomos de Insetos , Tamanho do Genoma , Hemípteros/genética
15.
ACS Omega ; 9(30): 32455-32468, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39100362

RESUMO

The Qilongtian capsule (QLT) is a Chinese patent medicine that has been approved for the treatment of chronic obstructive pulmonary disease (COPD). However, the precise pharmacodynamic material basis and molecular mechanism have not been well illustrated. In this study, we identified the effect of QLT on COPD through a cigarette smoke extract (CSE)/lipopolysaccharide (LPS) induced COPD mice model. The absorption of blood components in QLT were identified using ultrahigh performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Network pharmacology was used to predict the potential targets and therapeutic mechanisms of QLT, which were further validated using in vivo experiments and molecular docking. Pharmacodynamic studies revealed that QLT could ameliorate pulmonary function and pulmonary pathology, reduce collagen fiber accumulation, and attenuate inflammatory responses in mice with CSE/LPS induced COPD. A total of 21 components of QLT absorbed in the blood were detected. Network pharmacology analysis indicated that TNF, IL-6, EGFR, and AKT1 may be the core targets, mainly involving the MAPK signaling pathway. Besides, Sachaloside II, Ginsenoside Rh1, Ginsenoside F1, Rosiridin, and Ginsenoside Rf were the key compounds. Molecular docking results showed that the key components could spontaneously bind to EGFR and MAPK to form a relatively stable conformation. In vivo experiments revealed that QLT could suppress the activation of the EGFR/MAPK signaling pathway, thereby improving lung injury in mice with COPD. Overall, these findings provide evidence for the treatment of COPD with QLT.

18.
Small ; : e2404689, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115098

RESUMO

Efficient and stable catalysts are in high demand for accelerating the oxygen evolution reaction (OER). Herein, a high-entropy sulfide (HES) of (FeCoNiCrCuAl)S@HCS with a 3D structure is successfully prepared by utilizing a simple one-step solvothermal method and employed as catalyst toward OER. The lower electronegativity of Al compared to the other metal elements and its anti-corrosion character enable an outstanding OER performance of (FeCoNiCrCuAl)S@HCS with an overpotential of 253 mV at 10 mA cm-2 and an excellent durability after 20 000 CV cycles, outperforming the commercial RuO2 and most reported metal-sulfide catalysts. Experiments coupled with theoretical calculations reveal that Al atom primarily serves as electron donor and promotes a redistribution of local electrons from Co and Cr toward adjacent Fe, Ni, and Cu sites. As a result, the Cr-Al site possesses a lowest energy barrier during the rate-determining step and works as the dominant active site for OER process. This study provides a novel insight and strategy into structural design and performance enhancement for HES materials.

19.
Adv Mater ; : e2404923, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39149776

RESUMO

Epitaxial growth of 2D transition metal dichalcogenides (TMDCs) on sapphire substrates has been recognized as a pivotal method for producing wafer-scale single-crystal films. Both step-edges and symmetry of substrate surfaces have been proposed as controlling factors. However, the underlying fundamental still remains elusive. In this work, through the molybdenum disulfide (MoS2) growth on C/M sapphire, it is demonstrated that controlling the sulfur evaporation rate is crucial for dictating the switch between atomic-edge guided epitaxy and van der Waals epitaxy. Low-concentration sulfur condition preserves O/Al-terminated step edges, fostering atomic-edge epitaxy, while high-concentration sulfur leads to S-terminated edges, preferring van der Waals epitaxy. These experiments reveal that on a 2 in. wafer, the van der Waals epitaxy mechanism achieves better control in MoS2 alignment (≈99%) compared to the step edge mechanism (<85%). These findings shed light on the nuanced role of atomic-level thermodynamics in controlling nucleation modes of TMDCs, thereby providing a pathway for the precise fabrication of single-crystal 2D materials on a wafer scale.

20.
Quant Imaging Med Surg ; 14(8): 5665-5681, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39144048

RESUMO

Background: Preoperative grading gliomas is essential for therapeutic clinical decision-making. Current non-invasive imaging modality for glioma grading were primarily focused on magnetic resonance imaging (MRI) or positron emission tomography (PET) of the tumor region. However, these methods overlook the peritumoral region (PTR) of tumor and cannot take full advantage of the biological information derived from hybrid-imaging. Therefore, we aimed to combine multiparameter from hybrid 18F-fluorodeoxyglucose (18F-FDG) PET/MRI of the solid component and PTR were combined for differentiating high-grade glioma (HGG) from low-grade glioma (LGG). Methods: A total of 76 patients with pathologically confirmed glioma (41 HGG and 35 LGG) who underwent simultaneous 18F-FDG PET, arterial spin labelling (ASL), and diffusion-weighted imaging (DWI) with hybrid PET/MRI were retrospectively enrolled. The relative maximum standardized uptake value (rSUVmax), relative cerebral blood flow (rCBF), and relative minimum apparent diffusion coefficient (rADCmin) for the solid component and PTR at different distances outside tumoral border were compared. Receiver operating characteristic (ROC) curves were applied to assess the grading performance. A nomogram for HGG prediction was constructed. Results: HGGs displayed higher rSUVmax and rCBF but lower rADCmin in the solid component and 5 mm-adjacent PTR, lower rADCmin in 10 mm-adjacent PTR, and higher rCBF in 15- and 20-mm-adjacent PTR. rSUVmax in solid component performed best [area under the curve (AUC) =0.865] as a single parameter for grading. Combination of rSUVmax in the solid component and adjacent 20 mm performed better (AUC =0.881). Integration of all 3 indicators in the solid component and adjacent 20 mm performed the best (AUC =0.928). The nomogram including rSUVmax, rCBF, and rADCmin in the solid component and 5-mm-adjacent PTR predicted HGG with a concordance index (C-index) of 0.906. Conclusions: Multiparametric 18F-FDG PET/MRI from the solid component and PTR performed excellently in differentiating HGGs from LGGs. It can be used as a non-invasive and effective tool for preoperative grade stratification of patients with glioma, and can be considered in clinical practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA