Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 41: 107841, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35146082

RESUMO

The data provided in this study are related to the fabrication of two light-responsive systems based on reduced graphene oxide (rGO) functionalized with the polymers Pluronic P123 (P123), rGO-P123, and polyethyleneimine (PEI), rGO-PEI, and loaded with amphotericin B (AmB), an antileishmanial drug. Here are described the experimental design to obtain the systems and characterization methods, such as Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Raman Spectroscopy, Powder X-Ray Diffraction, Transmission Electron Microscopy, Scanning Electron Microscopy and Thermogravimetric Analyses. Also, AmB spectroscopy studies are described. The materials rGO-P123 and rGO-PEI were loaded with AmB and the optimization of AmB and polymer fragments structures revealed several possible hydrogen bonds formed between the materials and the drug. The drug release was analyzed with and without Near-Infrared (NIR) light. In the studies conducted under NIR light irradiation for 10 min, an infrared lamp was disposed at 64 cm from the samples and an optical fiber thermometer was employed to measure the temperature variation. Cytotoxicity studies and antiproliferative assays against Leishmania amazonensis promastigotes were evaluated. The complete work data entitled Amphotericin-B-Loaded Polymer-Functionalized Reduced Graphene Oxides for Leishmania amazonensis Chemo-Photothermal Therapy have been published to Colloids and Surfaces B: Bionterfaces (https://doi.org/10.1016/j.colsurfb.2021.112169) [1].

2.
Colloids Surf B Biointerfaces ; 209(Pt 1): 112169, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34752985

RESUMO

Two platforms based on reduced graphene oxide (rGO) functionalized with Pluronic® P123 (rGO-P123) and polyethyleneimine - PEI (rGO-PEI) polymers and loaded with amphotericin B (AmB) were fabricated and tested against Leishmania amazonensis, which can cause cutaneous and diffuse cutaneous leishmaniasis. The materials rGO-P123 and rGO-PEI were efficiently loaded with AmB - a polyene antibiotic - which resulted in rGO-P123-AmB (0.078 mg per mg of material) and rGO-PEI-AmB (0.086 mg per mg of material). Under near-infrared (NIR) light irradiation, the amount of AmB released from rGO-PEI-AmB at pH 5.0 and 7.4 doubled in comparison to AmB released in the absence of NIR light under identical conditions. It was accompanied by a photothermal effect. Otherwise, rGO-P123-AmB did not show a significant change in AmB released in the presence and absence of NIR light. Cytotoxicity studies in mammalian host macrophages revealed that rGO-PEI and rGO-PEI-AmB were nontoxic to the host cells, whereas rGO-123 and rGO-P123-AmB were very toxic, particularly the latter. Therefore, only rGO-PEI and rGO-PEI-AmB were tested against L. amazonensis promastigotes in the presence and absence of NIR light. In vitro antiproliferative effects revealed that rGO-PEI-AmB showed a more pronounced activity against the parasite than rGO-PEI, which was improved under NIR light irradiation. Scanning-transmission electron microscopy of L. amazonensis promastigotes after incubation with rGO-PEI or rGO-PEI-AmB suggested autophagic and necrotic cell death. Thus, the facile synthesis, high AmB loading capacity and good photothermal effect make the rGO-PEI-AmB platform a promising candidate for the topical treatment of cutaneous leishmaniasis.


Assuntos
Grafite , Leishmania , Anfotericina B/farmacologia , Animais , Óxidos , Terapia Fototérmica , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA