Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(35): 53873-53883, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35292897

RESUMO

The present study reports on the synthesis of Cu-bismuth oxide (CuBi2O4)-based nanorods by using a simple co-precipitation method for the photocatalytic degradation of caffeic acid (CA). The incorporation of Cu metal ions during the synthesis of CuBi2O4 nanorods might be advantageous to avoid the aggregation and control the leach out of metal ions. The calculated bandgap values of ~ 1.04, 1.02, and 0.94 eV were observed for CuBi2O4 with different amounts of Cu 1.0, 0.50, and 0.25 g, respectively. Varying the quantity of Cu metal ions easily tuned the bandgap value within the CuBi2O4-based nanorods. However, a further decrease in the bandgap value increased the recombination rate, and the less photocatalyst performance was observed. The CA degradation could be explained based on the species distribution. The CA pKa was mainly located between pKa1 and pKa2 of 4.43 and 8.6, respectively. The Cu within the CuBi2O4-based nanorods changed the electronic properties and the antibacterial ability. Therefore, the synthesized CuBi2O4-based nanorod cluster might be a promising material for the photocatalytic degradation of CA.


Assuntos
Cobre , Nanotubos , Ácidos Cafeicos , Catálise
2.
Analyst ; 145(24): 7898-7906, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33016273

RESUMO

The huge demand for the clinical diagnosis of diabetes mellitus has prompted the development of great-performance sensing platforms for glucose detection. Non-enzymatic glucose sensors are getting closer to their use in realistic applications. In this work, polyvinylpyrrolidone (PVP)-conjugated bimetallic Pt-Pd nanosuperlattices were synthesized precisely through a simple synthesis procedure, leading to controllable spherical morphologies with significantly fine and precise nanostructures in a size range of ∼3-5 nm by the reduction of Pt and Pd precursors in ethylene glycol, using an ultrasonic method. High-resolution transmission electron microscopy (HRTEM) measurements evidenced the formation of Pt-Pd bimetallic nanosuperlattices (BMNSLs). The superlattice-fringe patterns (111) of bimetallic Pt-Pd NSLs were identified in the HRTEM images, clearly showing their crystalline nature. The prepared material was used in the electrochemical oxidation of glucose using voltammetry analyses. The experimental evidence indicates that the Pt-Pd BMNSL modified glassy carbon electrode is effective for the selective amperometric detection of glucose in the presence of galactose, sucrose, fructose, lactose, and ascorbic acid. Moreover, its application in the detection of glucose in real serum and urine samples was assessed and good recoveries are achieved. The results show that a Pt-Pd bimetallic nanosuperlattice with high surface area, catalytic activity, and superior selectivity could be a promising material in the generation of novel electrodes for low-cost non-enzymatic glucose sensors.


Assuntos
Nanoestruturas , Platina , Carbono , Técnicas Eletroquímicas , Eletrodos , Glucose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA