Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Bacteriol ; 202(9)2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32041798

RESUMO

We report that the absence of an oxidized guanine (GO) system or the apurinic/apyrimidinic (AP) endonucleases Nfo, ExoA, and Nth promoted stress-associated mutagenesis (SAM) in Bacillus subtilis YB955 (hisC952 metB5 leuC427). Moreover, MutY-promoted SAM was Mfd dependent, suggesting that transcriptional transactions over nonbulky DNA lesions promoted error-prone repair. Here, we inquired whether Mfd and GreA, which control transcription-coupled repair and transcription fidelity, influence the mutagenic events occurring in nutritionally stressed B. subtilis YB955 cells deficient in the GO or AP endonuclease repair proteins. To this end, mfd and greA were disabled in genetic backgrounds defective in the GO and AP endonuclease repair proteins, and the strains were tested for growth-associated and stress-associated mutagenesis. The results revealed that disruption of mfd or greA abrogated the production of stress-associated amino acid revertants in the GO and nfo exoA nth strains, respectively. These results suggest that in nutritionally stressed B. subtilis cells, spontaneous nonbulky DNA lesions are processed in an error-prone manner with the participation of Mfd and GreA. In support of this notion, stationary-phase ΔytkD ΔmutM ΔmutY (referred to here as ΔGO) and Δnfo ΔexoA Δnth (referred to here as ΔAP) cells accumulated 8-oxoguanine (8-OxoG) lesions, which increased significantly following Mfd disruption. In contrast, during exponential growth, disruption of mfd or greA increased the production of His+, Met+, or Leu+ prototrophs in both DNA repair-deficient strains. Thus, in addition to unveiling a role for GreA in mutagenesis, our results suggest that Mfd and GreA promote or prevent mutagenic events driven by spontaneous genetic lesions during the life cycle of B. subtilisIMPORTANCE In this paper, we report that spontaneous genetic lesions of an oxidative nature in growing and nutritionally stressed B. subtilis strain YB955 (hisC952 metB5 leuC427) cells drive Mfd- and GreA-dependent repair transactions. However, whereas Mfd and GreA elicit faithful repair events during growth to maintain genome fidelity, under starving conditions, both factors promote error-prone repair to produce genetic diversity, allowing B. subtilis to escape from growth-limiting conditions.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Reparo do DNA , Fatores de Transcrição/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Dano ao DNA , Regulação Bacteriana da Expressão Gênica , Mutagênese , Mutação , Fatores de Transcrição/genética
2.
PLoS One ; 12(7): e0179625, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28700593

RESUMO

A forward mutagenesis system based on the acquisition of mutations that inactivate the thymidylate synthase gene (TMS) and confer a trimethoprim resistant (Tmpr) phenotype was developed and utilized to study transcription-mediated mutagenesis (TMM). In addition to thyA, Bacillus subtilis possesses thyB, whose expression occurs under conditions of cell stress; therefore, we generated a thyB- thyA+ mutant strain. Tmpr colonies of this strain were produced with a spontaneous mutation frequency of ~1.4 × 10-9. Genetic disruption of the canonical mismatch (MMR) and guanine oxidized (GO) repair pathways increased the Tmpr frequency of mutation by ~2-3 orders of magnitude. A wide spectrum of base substitutions as well as insertion and deletions in the ORF of thyA were found to confer a Tmpr phenotype. Stationary-phase-associated mutagenesis (SPM) assays revealed that colonies with a Tmpr phenotype, accumulated over a period of ten days with a frequency of ~ 60 ×10-7. The Tmpr system was further modified to study TMM by constructing a ΔthyA ΔthyB strain carrying an IPTG-inducible Pspac-thyA cassette. In conditions of transcriptional induction of thyA, the generation of Tmpr colonies increased ~3-fold compared to conditions of transcriptional repression. Further, the Mfd and GreA factors were necessary for the generation of Tmpr colonies in the presence of IPTG in B. subtilis. Because GreA and Mfd facilitate transcription-coupled repair, our results suggest that TMM is a mechanim to produce genetic diversity in highly transcribed regions in growth-limited B. subtilis cells.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutagênese , Mutação , Timidilato Sintase/genética , Timidilato Sintase/metabolismo , Trimetoprima/farmacologia
3.
Bio Protoc ; 7(23): e2634, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34595302

RESUMO

Elucidating how a population of non-growing bacteria generates mutations improves our understanding of phenomena like antibiotic resistance, bacterial pathogenesis, genetic diversity and evolution. To evaluate mutations that occur in nutritionally stressed non-growing bacteria, we have employed the strain B. subtilis YB955, which measures the reversions rates to the chromosomal auxotrophies hisC952, metB5 and leuC427 (Sung and Yasbin, 2002). This gain-of-function system has successfully allowed establishing the role played by repair systems and transcriptional factors in stress-associated mutagenesis (SPM) (Barajas- Ornelas et al., 2014 ; Gómez- Marroquín et al., 2016 ). In a recent study (Castro- Cerritos et al., 2017 ), it was found that Ribonucleotide Reductase (RNR) was necessary for SPM; this enzyme is essential in this bacterium. We engineered a conditional mutant of strain B. subtilis YB955 in which expression of the nrdEF operon was modulated by isopropyl-ß-D-thiogalactopyranoside (IPTG) (Castro- Cerritos et al., 2017 ). The conditions to determine mutation frequencies conferring amino acid prototrophy in three genes (hisC952, metB5, leuC427) under nutritional stress in this conditional mutant are detailed here. This technique could be used to evaluate the participation of essential genes in the mutagenic processes occurring in stressed B. subtilis cells.

4.
Extremophiles ; 18(2): 385-98, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24446065

RESUMO

Los Azufres spa consists of a hydrothermal spring system in the Mexican Volcanic Axis. Five samples (two microbial mats, two mud pools and one cenote water), characterized by high acidity (pH between 1 and 3) and temperatures varying from 27 to 87 °C, were investigated for their microbial diversity by Terminal-Restriction Fragment Length Polymorphism (T-RFLP) and 16S rRNA gene library analyses. These data are the first to describe microbial diversity from Los Azufres geothermal belt. The data obtained from both approaches suggested a low bacterial diversity in all five samples. Despite their proximity, the sampling points differed by their physico-chemical conditions (mainly temperature and matrix type) and thus exhibited different dominant bacterial populations: anoxygenic phototrophs related to the genus Rhodobacter in the biomats, colorless sulfur oxidizers Acidithiobacillus sp. in the warm mud and water samples, and Lyzobacter sp.-related populations in the hot mud sample (87 °C). Molecular data also allowed the detection of sulfate and sulfur reducers related to Thermodesulfobium and Desulfurella genera. Several strains affiliated to both genera were enriched or isolated from the mesophilic mud sample. A feature common to all samples was the dominance of bacteria involved in sulfur and iron biogeochemical cycles (Rhodobacter, Acidithiobacillus, Thiomonas, Desulfurella and Thermodesulfobium genera).


Assuntos
Fontes Termais/microbiologia , Microbiota , Sulfatos/metabolismo , Enxofre/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , México , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA