Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plant Reprod ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019279

RESUMO

KEY MESSAGE: The miR822 together with of AGO9 protein, modulates monosporic development in Arabidopsis thaliana through the regulation of target genes encoding Cysteine/Histidine-Rich C1 domain proteins, revealing a new role of miRNAs in the control of megaspore formation in flowering plants. In the ovule of flowering plants, the establishment of the haploid generation occurs when a somatic cell differentiates into a megaspore mother cell (MMC) and initiates meiosis. As most flowering plants, Arabidopsis thaliana (Arabidopsis) undergoes a monosporic type of gametogenesis as three meiotically derived cells degenerate, and a single one-the functional megaspore (FM), divides mitotically to form the female gametophyte. The genetic basis and molecular mechanisms that control monosporic gametophyte development remain largely unknown. Here, we show that Arabidopsis plants carrying loss-of-function mutations in the miR822, give rise to extranumerary surviving megaspores that acquire a FM identity and divides without giving rise to differentiated female gametophytes. The overexpression of three miR822 putative target genes encoding cysteine/histidine-rich C1 (DC1) domain proteins, At5g02350, At5g02330 and At2g13900 results in defects equivalent to those found in mutant mir822 plants. The three miR822 targets genes are overexpressed in ago9 mutant ovules, suggesting that miR822 acts through an AGO9-dependent pathway to negatively regulate DC1 domain proteins and restricts the survival of meiotically derived cells to a single megaspore. Our results identify a mechanism mediated by the AGO9-miR822 complex that modulates monosporic female gametogenesis in Arabidopsis thaliana.

3.
Elife ; 122023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37070964

RESUMO

Archaeological cobs from Paredones and Huaca Prieta (Peru) represent some of the oldest maize known to date, yet they present relevant phenotypic traits corresponding to domesticated maize. This contrasts with the earliest Mexican macro-specimens from Guila Naquitz and San Marcos, which are phenotypically intermediate for these traits, even though they date more recently in time. To gain insights into the origins of ancient Peruvian maize, we sequenced DNA from three Paredones specimens dating ~6700-5000 calibrated years before present (BP), conducting comparative analyses with two teosinte subspecies (Zea mays ssp. mexicana and parviglumis) and extant maize, that include highland and lowland landraces from Mesoamerica and South America. We show that Paredones maize originated from the same domestication event as Mexican maize and was domesticated by ~6700 BP, implying rapid dispersal followed by improvement. Paredones maize shows no relevant gene flow from mexicana, smaller than that observed in teosinte parviglumis. Thus, Paredones samples represent the only maize without confounding mexicana variation found to date. It also harbors significantly fewer alleles previously found to be adaptive to highlands, but not of alleles adaptive to lowlands, supporting a lowland migration route. Our overall results imply that Paredones maize originated in Mesoamerica, arrived in Peru without mexicana introgression through a rapid lowland migration route, and underwent improvements in both Mesoamerica and South America.


The plant we know today as maize or corn began its story 9,000 years ago in modern-day Mexico, when farmers of the Balsas River basin started to carefully breed its ancestor, the wild grass teosinte parviglumis. Recent discoveries suggest the crop may have started to travel to South America before its domestication was fully complete, leading to a complex history of semi-tamed lineages evolving in parallel in different regions. For example, 5,300-year-old corn specimens found in Tehuacán, in central Mexico, still genetically and morphologically resemble teosinte. Meanwhile, cobs harvested about 6,700 to 5,000 years ago on the northern coast of Peru ­ 3800km away from where maize was first domesticated ­ look like the ones we know today. Vallebueno-Estrada et al. aimed to explore the evolutionary history of this Peruvian maize, which was discovered at the archaeological coastal site of Paredones. To do so, they extracted and sequenced its genetic information, and compared these sequences with those from modern varieties of lowland and highland maize, as well as from teosinte parviglumis and teosinte mexicana. The analyses showed that the ancestor of the Paredones maize emerged from teosinte parviglumis like any other lineage, but that it was already domesticated when it started to spread South; by the time it was present in Peru 6,700 years ago, it was genetically closer to modern-day crops. This early departure is consistent with the fact that the Paredones specimens lacked teosinte mexicana genetic variants; this highland relative of lowland parviglumis is believed to have interbred with maize lineages from Central America more recently, when these were brought to higher altitudes. The presence of genetic marks tailored to low-elevation regions suggested that the Paredones maize lineage migrated through a coastal corridor connecting Central and South America, arriving in northern Peru about 2,500 years after first arising from teosinte parviglumis in Central America around 9,000 years ago. Under the care of rapidly developing Central Andean societies, the crop then evolved to adapt to its local conditions. Maize today has spread to all continents besides Antarctica; we produce more of it than wheat, rice or any other grain. How our modern varieties will adapt to the environmental constraints brought by climate change remains unclear. By peering into the history of maize, Vallebueno-Estrada et al. hope to find genetic variations which could inform new breeding strategies that improve the future of this crop.


Assuntos
Domesticação , Zea mays , Peru , Zea mays/genética , América do Sul , México
4.
Front Plant Sci ; 14: 1123211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36993852

RESUMO

Introduction: Although DNA methylation patterns are generally considered to be faithfully inherited in Arabidopsis thaliana (Arabidopsis), there is evidence of reprogramming during both male and female gametogenesis. The gynoecium is the floral reproductive organ from which the ovules develop and generate meiotically derived cells that give rise to the female gametophyte. It is not known whether the gynoecium can condition genomic methylation in the ovule or the developing female gametophyte. Methods: We performed whole genome bisulfite sequencing to characterize the methylation patterns that prevail in the genomic DNA of pre-meiotic gynoecia of wild-type and three mutants defective in genes of the RNA-directed DNA methylation pathway (RdDM): ARGONAUTE4 (AGO4), ARGONAUTE9 (AGO9), and RNA-DEPENDENT RNA POLYMERASE6 (RDR6). Results: By globally analyzing transposable elements (TEs) and genes located across the Arabidopsis genome, we show that DNA methylation levels are similar to those of gametophytic cells rather than those of sporophytic organs such as seedlings and rosette leaves. We show that none of the mutations completely abolishes RdDM, suggesting strong redundancy within the methylation pathways. Among all, ago4 mutation has the strongest effect on RdDM, causing more CHH hypomethylation than ago9 and rdr6. We identify 22 genes whose DNA methylation is significantly reduced in ago4, ago9 and rdr6 mutants, revealing potential targets regulated by the RdDM pathway in premeiotic gyneocia. Discussion: Our results indicate that drastic changes in methylation levels in all three contexts occur in female reproductive organs at the sporophytic level, prior to the alternation of generations within the ovule primordium, offering a possibility to start identifying the function of specific genes acting in the establishment of the female gametophytic phase of the Arabidopsis life cycle.

5.
Methods Mol Biol ; 2512: 249-257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35818009

RESUMO

The possibility of analyzing chromatin topology in developing plant embryos is hampered by inaccessibility of the embryo sac, deeply embedded in the maternal seed tissue, following double fertilization. Here we describe a protocol to isolate, purify, and prepare developing Boechera stricta embryos for chromosome conformation capture-based methods as in situ Hi-C experiments. Early globular embryos can be isolated by air-pressure microaspiration, and subsequently washed to eliminate residual cells from the endosperm and maternal seed coat, allowing for pure sampling of selected stages of embryogenesis. This protocol allows for the possibility of comparing genome topology during plant embryonic differentiation since early until late embryo development stages.


Assuntos
Brassicaceae , Brassicaceae/genética , Genoma , Sementes
6.
Proc Natl Acad Sci U S A ; 119(17): e2110245119, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35446704

RESUMO

Efforts to understand the phenotypic transition that gave rise to maize from teosinte have mainly focused on the analysis of aerial organs, with little insights into possible domestication traits affecting the root system. Archeological excavations in San Marcos cave (Tehuacán, Mexico) yielded two well-preserved 5,300 to 4,970 calibrated y B.P. specimens (SM3 and SM11) corresponding to root stalks composed of at least five nodes with multiple nodal roots and, in case, a complete embryonic root system. To characterize in detail their architecture and anatomy, we used laser ablation tomography to reconstruct a three-dimensional segment of their nodal roots and a scutellar node, revealing exquisite preservation of the inner tissue and cell organization and providing reliable morphometric parameters for cellular characteristics of the stele and cortex. Whereas SM3 showed multiple cortical sclerenchyma typical of extant maize, the scutellar node of the SM11 embryonic root system completely lacked seminal roots, an attribute found in extant teosinte and in two specific maize mutants: root with undetectable meristem1 (rum1) and rootless concerning crown and seminal roots (rtcs). Ancient DNA sequences of SM10­a third San Marcos specimen of equivalent age to SM3 and SM11­revealed the presence of mutations in the transcribed sequence of both genes, offering the possibility for some of these mutations to be involved in the lack of seminal roots of the ancient specimens. Our results indicate that the root system of the earliest maize from Tehuacán resembled teosinte in traits important for maize drought adaptation.


Assuntos
Domesticação , Zea mays , México , Fenótipo , Zea mays/genética
7.
Sci Rep ; 11(1): 15725, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344949

RESUMO

The most studied DNA methylation pathway in plants is the RNA Directed DNA Methylation (RdDM), a conserved mechanism that involves the role of noncoding RNAs to control the expansion of the noncoding genome. Genome-wide DNA methylation levels have been reported to correlate with genome size. However, little is known about the catalog of noncoding RNAs and the impact on DNA methylation in small plant genomes with reduced noncoding regions. Because of the small length of intergenic regions in the compact genome of the carnivorous plant Utricularia gibba, we investigated its repertoire of noncoding RNA and DNA methylation landscape. Here, we report that, compared to other angiosperms, U. gibba has an unusual distribution of small RNAs and reduced global DNA methylation levels. DNA methylation was determined using a novel strategy based on long-read DNA sequencing with the Pacific Bioscience platform and confirmed by whole-genome bisulfite sequencing. Moreover, some key genes involved in the RdDM pathway may not represented by compensatory paralogs or comprise truncated proteins, for example, U. gibba DICER-LIKE 3 (DCL3), encoding a DICER endonuclease that produces 24-nt small-interfering RNAs, has lost key domains required for complete function. Our results unveil that a truncated DCL3 correlates with a decreased proportion of 24-nt small-interfering RNAs, low DNA methylation levels, and developmental abnormalities during female gametogenesis in U. gibba. Alterations in female gametogenesis are reminiscent of RdDM mutant phenotypes in Arabidopsis thaliana. It would be interesting to further study the biological implications of the DCL3 truncation in U. gibba, as it could represent an initial step in the evolution of RdDM pathway in compact genomes.


Assuntos
Metilação de DNA , Endonucleases/genética , Endonucleases/metabolismo , Gametogênese , Lamiales/fisiologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA de Plantas , RNA não Traduzido/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo
8.
Methods Mol Biol ; 2061: 13-24, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31583649

RESUMO

Here we present an optimized protocol for immunolocalization of meiotic proteins during female meiosis in whole mount tissues. It ensures ovule morphology integrity and homogeneous reagent penetration. The method relies on paraformaldehyde tissue fixation, polyacrylamide embedding, tissue permeabilization, antibody incubation, counterstaining, and confocal microscopy analysis. This protocol has been used in diverse Arabidopsis ecotypes and in the legume Vigna unguiculata.


Assuntos
Imuno-Histoquímica , Meiose , Células Vegetais/fisiologia , Arabidopsis/citologia , Arabidopsis/metabolismo , Imuno-Histoquímica/métodos , Microscopia Confocal
9.
Methods Mol Biol ; 1932: 335-345, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30701511

RESUMO

Determining the in situ pattern of protein expression is crucial to accurately establish regulatory function and mode of action of any plant developmental program. Here, we describe two immunolocalization procedures that are consistently used to determine subcellular localization of ARGONAUTE proteins in the ovule of the Brassicaceae. The first is performed in resin-embedded semi-thin sections of developing ovules that can be observed under bright-field microscopy. The second is based in polyacrylamide immersion of complete (whole-mounted) gynoecia or ovules that are observed under confocal microscopy. Both procedures have been successfully performed to localize proteins involved in RNA-directed DNA methylation during the development of the anatropous bitegmic ovule in Arabidopsis, Brassica, or Boechera species.


Assuntos
Arabidopsis/genética , Proteínas Argonautas/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Óvulo Vegetal/genética , Proteínas de Arabidopsis/genética , Metilação de DNA/genética , Regulação da Expressão Gênica de Plantas/genética
10.
Curr Top Dev Biol ; 131: 565-604, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30612631

RESUMO

Apomixis refers to a set of reproductive mechanisms that invariably rely on avoiding meiotic reduction and fertilization of the egg cell to generate clonal seeds. After having long been considered a strictly asexual oddity leading to extinction, the integration of more than 100 years of embryological, genetic, molecular, and ecological research has revealed apomixis as a widely spread component of the dynamic processes that shape flowering plant evolution. Apomixis involves several flexible and versatile developmental pathways that can be combined within the ovule to produce offspring. Here we review the large body of classic and contemporaneous contributions that have addressed unreduced gamete formation, haploid induction, and parthenogenesis in flowering plants. We emphasize similarities and differences between sexual and apomictic reproduction, and highlight their implications for the evolutionary emergence of asexual reproduction through seeds. On the basis of these comparisons, we propose a model that associates the developmental origin of apomixis to a dynamic epigenetic landscape, in which environmental fluctuations reversibly influence female reproductive development through mechanisms of hybridization and polyploidization.


Assuntos
Apomixia/fisiologia , Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Magnoliopsida/crescimento & desenvolvimento , Proteínas de Plantas/genética , Magnoliopsida/genética
11.
Proc Natl Acad Sci U S A ; 113(49): 14151-14156, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27872313

RESUMO

Pioneering archaeological expeditions lead by Richard MacNeish in the 1960s identified the valley of Tehuacán as an important center of early Mesoamerican agriculture, providing by far the widest collection of ancient crop remains, including maize. In 2012, a new exploration of San Marcos cave (Tehuacán, Mexico) yielded nonmanipulated maize specimens dating at a similar age of 5,300-4,970 calibrated y B.P. On the basis of shotgun sequencing and genomic comparisons to Balsas teosinte and modern maize, we show herein that the earliest maize from San Marcos cave was a partial domesticate diverging from the landraces and containing ancestral allelic variants that are absent from extant maize populations. Whereas some domestication loci, such as teosinte branched1 (tb1) and brittle endosperm2 (bt2), had already lost most of the nucleotide variability present in Balsas teosinte, others, such as teosinte glume architecture1 (tga1) and sugary1 (su1), conserved partial levels of nucleotide variability that are absent from extant maize. Genetic comparisons among three temporally convergent samples revealed that they were homozygous and identical by descent across their genome. Our results indicate that the earliest maize from San Marcos was already inbred, opening the possibility for Tehuacán maize cultivation evolving from reduced founder populations of isolated and perhaps self-pollinated individuals.


Assuntos
Domesticação , Genoma de Planta , Zea mays/genética , Arqueologia , Variação Genética , Endogamia , México
12.
Front Plant Sci ; 7: 1347, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27635128

RESUMO

Small RNA (sRNA)-mediated gene silencing represents a conserved regulatory mechanism controlling a wide diversity of developmental processes through interactions of sRNAs with proteins of the ARGONAUTE (AGO) family. On the basis of a large phylogenetic analysis that includes 206 AGO genes belonging to 23 plant species, AGO genes group into four clades corresponding to the phylogenetic distribution proposed for the ten family members of Arabidopsis thaliana. A primary analysis of the corresponding protein sequences resulted in 50 sequences of amino acids (blocks) conserved across their linear length. Protein members of the AGO4/6/8/9 and AGO1/10 clades are more conserved than members of the AGO5 and AGO2/3/7 clades. In addition to blocks containing components of the PIWI, PAZ, and DUF1785 domains, members of the AGO2/3/7 and AGO4/6/8/9 clades possess other consensus block sequences that are exclusive of members within these clades, suggesting unforeseen functional specialization revealed by their primary sequence. We also show that AGO proteins of animal and plant kingdoms share linear sequences of blocks that include motifs involved in posttranslational modifications such as those regulating AGO2 in humans and the PIWI protein AUBERGINE in Drosophila. Our results open possibilities for exploring new structural and functional aspects related to the evolution of AGO proteins within the plant kingdom, and their convergence with analogous proteins in mammals and invertebrates.

13.
Plant Reprod ; 29(1-2): 165-77, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26728622

RESUMO

KEY MESSAGE: Cowpea reproductive tools. Vigna unguiculata L. Walp. (cowpea) is recognized as a major legume food crop in Africa, but seed yields remain low in most varieties adapted to local conditions. The development of hybrid cowpea seed that could be saved after each generation, enabling significant yield increases, will require manipulation of reproductive development from a sexual to an asexual mode. To develop new technologies that could support the biotechnological manipulation of reproductive development in cowpea, we examined gametogenesis and seed formation in two transformable, African-adapted, day-length-insensitive varieties. Here, we show that these two varieties exhibit distinct morphological and phenological traits but share a common developmental sequence in terms of ovule formation and gametogenesis. We present a reproductive calendar that allows prediction of male and female gametogenesis on the basis of sporophytic parameters related to floral bud size and reproductive organ development, determining that gametogenesis occurs more rapidly in the anther than in the ovule. We also show that the mode of megagametogenesis is of the Polygonum-type and not Oenothera-type, as previously reported. Finally, we developed a whole-mount immunolocalization protocol and applied it to detect meiotic proteins in the cowpea megaspore mother cell, opening opportunities for comparing the dynamics of protein localization during male and female meiosis, as well as other reproductive events in this emerging legume model system.


Assuntos
Gametogênese Vegetal , Óvulo Vegetal/crescimento & desenvolvimento , Pólen/crescimento & desenvolvimento , Vigna/crescimento & desenvolvimento , Diferenciação Celular , Fertilização , Óvulo Vegetal/citologia , Pólen/citologia , Vigna/citologia
14.
Nat Protoc ; 10(10): 1535-42, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26357009

RESUMO

Here we describe a whole-mount immunolocalization protocol to follow the subcellular localization of proteins during female meiosis in Arabidopsis thaliana, a model species that is used to study sexual reproduction in flowering plants. By using confocal microscopy, the procedure allows one to follow megasporogenesis at all stages before differentiation of the functional megaspore. This in particular includes stages that occur during prophase I, such as the installation of the axial and central elements of the synaptonemal complex along the meiotic chromosomes. In contrast to procedures that require microtome sectioning or enzymatic isolation and smearing to separate female meiocytes from neighboring cells, this 3-day protocol preserves the constitution of the developing primordium and incorporates the architecture of the ovule to provide a temporal and spatial context to meiotic divisions. This opens up the possibility to systematically compare the dynamics of protein localization during female and male meiosis. Steps describe tissue collection and fixation, preparation of slides and polyacrylamide embedding, tissue permeabilization, antibody incubation, propidium iodide staining, and finally image acquisition by confocal microscopy. The procedure adds an essential technique to the toolkit of plant meiotic analysis, and it represents a framework for technical adaptations that could soon allow the analysis of plant reproductive alternatives to sexual reproduction.


Assuntos
Arabidopsis/genética , Imuno-Histoquímica/métodos , Meiose , Técnicas de Cultura de Tecidos , Animais , Feminino , Flores/citologia , Flores/genética , Masculino , Inclusão do Tecido
15.
Plant Cell ; 27(4): 1034-45, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25829442

RESUMO

In angiosperms, the transition to the female gametophytic phase relies on the specification of premeiotic gamete precursors from sporophytic cells in the ovule. In Arabidopsis thaliana, a single diploid cell is specified as the premeiotic female gamete precursor. Here, we show that ecotypes of Arabidopsis exhibit differences in megasporogenesis leading to phenotypes reminiscent of defects in dominant mutations that epigenetically affect the specification of female gamete precursors. Intraspecific hybridization and polyploidy exacerbate these defects, which segregate quantitatively in F2 populations derived from ecotypic hybrids, suggesting that multiple loci control cell specification at the onset of female meiosis. This variation in cell differentiation is influenced by the activity of ARGONAUTE9 (AGO9) and RNA-DEPENDENT RNA POLYMERASE6 (RDR6), two genes involved in epigenetic silencing that control the specification of female gamete precursors. The pattern of transcriptional regulation and localization of AGO9 varies among ecotypes, and abnormal gamete precursors in ovules defective for RDR6 share identity with ectopic gamete precursors found in selected ecotypes. Our results indicate that differences in the epigenetic control of cell specification lead to natural phenotypic variation during megasporogenesis. We propose that this mechanism could be implicated in the emergence and evolution of the reproductive alternatives that prevail in flowering plants.


Assuntos
Arabidopsis/genética , Arabidopsis/fisiologia , Epigênese Genética/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Gametogênese Vegetal/genética , Gametogênese Vegetal/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo
16.
Plant Reprod ; 28(2): 91-102, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25796397

RESUMO

KEY MESSAGE: Meiosis and unreduced gametes. Sexual flowering plants produce meiotically derived cells that give rise to the male and female haploid gametophytic phase. In the ovule, usually a single precursor (the megaspore mother cell) undergoes meiosis to form four haploid megaspores; however, numerous mutants result in the formation of unreduced gametes, sometimes showing female specificity, a phenomenon reminiscent of the initiation of gametophytic apomixis. Here, we review the developmental events that occur during female meiosis and megasporogenesis at the light of current possibilities to engineer unreduced gamete formation. We also provide an overview of the current understanding of mechanisms leading to parthenogenesis and discuss some of the conceptual implications for attempting the induction of clonal seed production in cultivated plants.


Assuntos
Produtos Agrícolas/citologia , Células Germinativas Vegetais/citologia , Meiose , Partenogênese , Sementes/citologia , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Células Germinativas Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
17.
PLoS One ; 8(10): e76977, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24194852

RESUMO

To investigate the genetic and molecular regulation that the female gametophyte could exert over neighboring sporophytic regions of the ovule, we performed a quantitative comparison of global expression in wild-type and nozzle/sporocyteless (spl) ovules of Arabidopsis thaliana (Arabidopsis), using Massively Parallel Signature Sequencing (MPSS). This comparison resulted in 1517 genes showing at least 3-fold increased expression in ovules lacking a female gametophyte, including those encoding 89 transcription factors, 50 kinases, 25 proteins containing a RNA-recognition motif (RRM), and 20 WD40 repeat proteins. We confirmed that eleven of these genes are either preferentially expressed or exclusive of spl ovules lacking a female gametophyte as compared to wild-type, and showed that six are also upregulated in determinant infertile1 (dif1), a meiotic mutant affected in a REC8-like cohesin that is also devoided of female gametophytes. The sporophytic misexpression of IOREMPTE, a WD40/transducin repeat gene that is preferentially expressed in the L1 layer of spl ovules, caused the arrest of female gametogenesis after differentiation of a functional megaspore. Our results show that in Arabidopsis, the sporophytic-gametophytic cross talk includes a negative regulation of the female gametophyte over specific genes that are detrimental for its growth and development, demonstrating its potential to exert a repressive control over neighboring regions in the ovule.


Assuntos
Arabidopsis/genética , Gametogênese Vegetal/genética , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Óvulo Vegetal/genética , Sequência de Bases , Primers do DNA/genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização In Situ , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
18.
Plant Cell ; 25(4): 1274-87, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23572547

RESUMO

Female gametogenesis in most flowering plants depends on the predetermined selection of a single meiotically derived cell, as the three other megaspores die without further division or differentiation. Although in Arabidopsis thaliana the formation of the functional megaspore (FM) is crucial for the establishment of the gametophytic generation, the mechanisms that determine the specification and fate of haploid cells remain unknown. Here, we show that the classical arabinogalactan protein 18 (AGP18) exerts an active regulation over the selection and survival of megaspores in Arabidopsis. During meiosis, AGP18 is expressed in integumentary cells located in the abaxial region of the ovule. Overexpression of AGP18 results in the abnormal maintenance of surviving megaspores that can acquire a FM identity but is not sufficient to induce FM differentiation before meiosis, indicating that AGP18 positively promotes the selection of viable megaspores. We also show that all four meiotically derived cells in the ovule of Arabidopsis are competent to differentiate into a gametic precursor and that the function of AGP18 is important for their selection and viability. Our results suggest an evolutionary role for arabinogalactan proteins in the acquisition of monospory and the developmental plasticity that is intrinsic to sexual reproduction in flowering plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glicoproteínas de Membrana/genética , Óvulo Vegetal/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Gametogênese Vegetal/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Glucuronidase/genética , Glucuronidase/metabolismo , Meiose/genética , Glicoproteínas de Membrana/metabolismo , Microscopia de Fluorescência , Mucoproteínas/genética , Mucoproteínas/metabolismo , Óvulo Vegetal/crescimento & desenvolvimento , Óvulo Vegetal/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Curr Opin Plant Biol ; 15(5): 549-55, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23000434

RESUMO

Apomixis is a natural form of asexual reproduction through seeds that leads to viable offspring genetically identical to the mother plant. New evidence from sexual model species indicates that the regulation of female gametogenesis and seed formation is also directed by epigenetic mechanisms that are crucial to control events that distinguish sexuality from apomixis, with important implications for our understanding of the evolutionary forces that shape structural variation and diversity in plant reproduction.


Assuntos
Apomixia/genética , Epigênese Genética , Plantas/genética , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Sementes/genética , Sementes/crescimento & desenvolvimento
20.
Braz. j. microbiol ; Braz. j. microbiol;43(2): 716-738, Apr.-June 2012. ilus, tab
Artigo em Inglês | LILACS | ID: lil-644490

RESUMO

To explore the molecular mechanisms that prevail during the establishment of the arbuscular mycorrhiza symbiosis involving the genus Glomus, we transcriptionally analysed spores of Glomus intraradices BE3 during early hyphal growth. Among 458 transcripts initially identified as being expressed at presymbiotic stages, 20% of sequences had homology to previously characterized eukaryotic genes, 30% were homologous to fungal coding sequences, and 9% showed homology to previously characterized bacterial genes. Among them, GintPbr1a encodes a homolog to Phenazine Biosynthesis Regulator (Pbr) of Burkholderia cenocepacia, an pleiotropic regulatory protein that activates phenazine production through transcriptional activation of the protein D isochorismatase biosynthetic enzyme phzD (Ramos et al., 2010). Whereas GintPbr1a is expressed during the presymbiotic phase, the G. intraradices BE3 homolog of phzD (BGintphzD) is transcriptionally active at the time of the establishment of the arbuscular mycorrhizal symbiosis. DNA from isolated bacterial cultures found in spores of G. intraradices BE3 confirmed that both BGintPbr1a and BGintphzD are present in the genome of its potential endosymbionts. Taken together, our results indicate that spores of G. intraradices BE3 express bacterial phenazine biosynthetic genes at the onset of the fungal-plant symbiotic interaction.


Assuntos
Sequência de Bases , Enzimas/biossíntese , Fenazinas/análise , Hifas/crescimento & desenvolvimento , Técnicas In Vitro , Micorrizas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Reação em Cadeia da Polimerase/métodos , Simbiose/genética , Ativação Enzimática , Métodos , Prevalência , Esporos Bacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA