Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phycol ; 57(2): 592-605, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33249614

RESUMO

Conditional differentiation between haploids and diploids has been proposed to drive the evolutionary stability of isomorphic biphasic life cycles. The cost of producing and maintaining genetic information has been posed as a possible driver of this conditional differentiation. Under this hypothesis, haploids benefit over diploids in resource-limited environments by halving the costs of producing and maintaining DNA. Spared resources can be allocated to enhance survival, growth or fertility. Here we test in the field whether indeed haploids have higher growth rates than diploids. Individuals of the red seaweed Agarophyton chilense, were mapped and followed during 2 years with 4-month census intervals across different stands within the Valdivia River estuary, Chile. As hypothesized, haploids grew larger and faster than diploids, but this was sex-dependent. Haploid (gametophyte) females grew twice as large and 15% faster than diploids (tetrasporophytes), whereas haploid males only grew as large and as fast as the maximum obtained by diploids in summer. However, haploid males maintained their maximum sizes and growth rates constant year-round, while diploids were smaller and had lower growth rates during the winter. In conclusion, our results confirm the conditional differentiation in size and growth between haploids and diploids but also identified important differences between males and females. Besides understanding life cycle evolution, the dynamics of A. chilense frond growth reported informs algal farmers regarding production optimization and should help in determining best planting and harvesting strategies.


Assuntos
Rodófitas , Alga Marinha , Animais , Chile , Diploide , Haploidia
2.
BMC Ecol ; 19(1): 6, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30704446

RESUMO

BACKGROUND: As plants, algae and some sessile invertebrates may grow in nearly monospecific assemblies, their collective biomass increases and if they compete hard enough some die, freeing up space. The concurrent increase in biomass and decrease in density is called self-thinning, and its trajectory over time or maximum values represent a boundary condition. For a single stand developing over time the boundary defines the carrying capacity of the environment but the most extreme trajectories emulate the efficiency of species in packing biomass into space. RESULTS: Here we present a meta-analysis of compiled data on biomass and density from 56 studies of 42 species of seaweeds from 8 orders within 3 phyla scattered through the world's oceans. Our analysis shows that, with respect to biomass, seaweeds are the most efficient space occupiers on Earth because they transgress previously fixed limits derived from land plants. This is probably because seaweeds are not limited by water and do not need structures for its transport or for transpiration; they photosynthesise and uptake nutrients over their entire surface; they are attached to the substrate by holdfasts that are small proportional to their volume or weight compared to roots; water provides them better support, reducing the need for tissues for rigidity. We also identified a biomass concentration common to plants and seaweeds which represents the threshold that no life on the planet can pass. Using each stand's distance to the biomass-density boundary, we determined that within the seaweeds the efficiency of space occupation differed amongst taxonomic and functional groups as well as with clonality and latitude. CONCLUSIONS: Algae occupy space more efficiently than plants, most likely because the watery environment facilitates the physical processes and integration of space occupation. The distance-to-the-boundary proves a good metric to discriminate among groups and may be useful for comparison of the most efficient biomass producing systems, or for the identification of systems impacted by pollution.


Assuntos
Biomassa , Fenômenos Fisiológicos Vegetais , Alga Marinha/fisiologia , Alga Marinha/classificação
3.
BMC Evol Biol ; 18(1): 183, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518318

RESUMO

BACKGROUND: Algal isomorphic biphasic life cycles alternate between free-living diploid (tetrasporophytes) and haploid (dioicious gametophytes) phases and the hypotheses explaining their maintenance are still debated. Classic models state that conditional differentiation between phases is required for the evolutionary stability of biphasic life cycles while other authors proposed that the uneven ploidy abundances observed in the field are explained by their cytological differences in spore production. RESULTS: We monitored the state and fate of individuals of the red seaweed Gracilaria chilensis periodically for 3 years in five intertidal pools from two sites with distinct conditions. We tested for differentiation in fecundity and spore survival among the gametophyte males and females (haploids) and the tetrasporophytes (diploids). We tested for the influence of fecundity and spore survival on the observed uneven ploidy abundances in recruits. The probability of a frond becoming fecund was size-dependent, highest for the haploid males and lowest for the haploid females, with the diploids displaying intermediate probabilities. Fecund diploids released more tetraspores than carpospores released by the haploid females. Spore survival depended on ploidy and on the local density of co-habiting adult fronds. An advantage of diploid over haploid germlings was observed at very low and very high adult fronds densities. CONCLUSIONS: Neither spore production nor spore survival determined the highly variable ploidy ratio within G. chilensis recruits. This result invalidates the hypothesis of natural cytological differences in spore production as the only driver of uneven field ploidy abundances in this species. Diploid spores (carpospores) survived better than haploid spores (tetraspores), especially in locations and time periods that were associated with the occurrence of strong biotic and abiotic stressors. We hypothesise that carpospore survival is higher due to support by their haploid female progenitors passing-on nutrients and chemical compounds improving survival under stressful conditions.


Assuntos
Diploide , Gracilaria/genética , Gracilaria/fisiologia , Haploidia , Análise de Variância , Probabilidade , Esporos
4.
BMC Evol Biol ; 18(1): 174, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30458728

RESUMO

BACKGROUND: Conditional differentiation is one of the most fundamental drivers of biodiversity. Competitive entities (usually species) differ in environmental or ecological niche enabling them to co-exist. Conditional differentiation of haploid and diploid generations is considered to be a requirement for the evolutionary stability of isomorphic biphasic life-cycles and the cause for the natural occurrence of both phases at uneven abundances. Theoretically, stage dependent survival rates are the most efficient way to explain conditional differentiation. RESULTS: We tested for conditional differentiation in survival rates among life stages (haploid males, haploid females, and diploids) of Gracilaria chilensis, an intertidal red alga occurring along the Chilean shores. Therefore, the fate of individuals was followed periodically for 3 years in five intertidal pools and, for the first time in isomorphic red algae, a composite model of the instantaneous survival rates was applied. The results showed the survival dependency on density (both competition and Allee effects), fertility, age, size, season and location, as well as the differentiation among stages for the survival dependencies of these factors. The young haploid females survived more than the young of the other stages under Allee effects during the environmentally stressful season at the more exposed locations, and under self-thinning during the active growth season. Furthermore, fertile haploid females had a higher survival than fertile haploid males or fertile diploids. CONCLUSIONS: Here, we show a survival advantage of haploids over diploids. The haploid females probably optimize their resource management targeting structural and physiological adaptations that significantly enhance survival under harsher conditions. In a companion paper we demonstrate a fertility advantage of diploids over haploids. Together, the survival and fertility differentiation support the evolution and prevalence of biphasic life-cycles.


Assuntos
Gracilaria/crescimento & desenvolvimento , Haploidia , Estágios do Ciclo de Vida , Chile , Ecossistema , Fertilidade , Probabilidade , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA