Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(58): 88066-88077, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35821321

RESUMO

Arsenic (As) is the cause for concern worldwide due to its high toxicity. Its presence in agricultural soils and groundwater adversely affects soybean (Glycine max L.) growth and yield and also endangers food safety. Plant growth-promoting rhizobacteria (PGPR) could be used as part of cost-effective and eco-friendly strategies to mitigate As phytotoxicity. However, simple inoculation of soybean with PGPR Bradyrhizobium japonicum E109 (E109), a common practice in Argentina, is not effective in counteracting the effects of As exposure. Our aim was to assess whether the response of soybean to arsenate (AsV) and arsenite (AsIII) could be helpfully modulated by co-inoculating E109 with the free-living PGPRs Azospirillum brasilense Cd (Cd) or Bacillus pumilus SF5 (SF5). Co-inoculation with E109 + SF5 alleviated As-induced depletion of chlorophyll a and b, and carotenoid content, reaching an increase of 26, 28 y 31%, respectively. It also enhanced nodulation (15-19%) under As exposure. E109 + Cd and E109 + SF5 induced changes in the antioxidant system, which could be related to the maintenance of redox homeostasis. Moreover, As accumulation was reduced by 53% in aerial parts of plants inoculated with E109 + Cd, and by 16% in the roots of those inoculated with E109 + SF5. The strains selected show interesting potential for the development of biotechnological schemes to improve soybean yield while guaranteeing safer food production.


Assuntos
Arsênio , Azospirillum brasilense , Glycine max , Arsênio/toxicidade , Cádmio , Clorofila A , Raízes de Plantas/microbiologia
2.
Environ Sci Pollut Res Int ; 27(2): 2287-2300, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31776908

RESUMO

Azospirillum brasilense Cd is a bacterial strain widely used as an inoculant of several crops due to its plant growth promoting properties. However, its beneficial effects depend on its viability and functionality under adverse environmental conditions, including the presence of arsenic (As) in agricultural soils. Therefore, the aim of this work was to evaluate the response of A. brasilense Cd to arsenate (AsV) and arsenite (AsIII). This bacterium was tolerant to As concentrations frequently found in soils. Moreover, properties related to roots colonization (motility, biofilm, and exopolymers) and plant growth promotion (auxin, siderophore production, and N2 fixation) were not significantly affected by the metalloid. In order to deepen the understanding on As responses of A. brasilense Cd, As resistance genes were sequenced and characterized for the first time in this work. These genes could mediate the redox As transformation and its extrusion outside the cell, so they could have direct association with the As tolerance observed. In addition, its As oxidation/reduction capacity could contribute to change the AsV/AsIII ratio in the environment. In conclusion, the results allowed to elucidate the As response of A. brasilense Cd and generate interest for its potential use in polluted environments.


Assuntos
Arsênio , Azospirillum brasilense , Arsênio/química , Azospirillum brasilense/química , Cádmio/química , Ácidos Indolacéticos/química , Raízes de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA