Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(19): 23742-23752, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33099741

RESUMO

Benzimidazoles (BZ) are among the most used drugs to treat parasitic diseases in both human and veterinary medicine. In this study, solutions fortified with albendazole (ABZ), fenbendazole (FBZ), and thiabendazole (TBZ) were subjected to photoperoxidation (UV/H2O2). The hydroxyl radicals generated by the process removed up to 99% of ABZ, and FBZ, in the highest dosage of H2O2 (i.e., 1.125 mmol L-1; 4.8 kJ L-1). In contrast, 20% of initial TBZ concentration remained in the residual solution. In the first 5 min of reaction (i.e., up to 0.750 mmol L-1 of H2O2), formation of the primary metabolites of ABZ-ricobendazole (RBZ), albendazole sulfone (ABZ-SO2), and oxfendazole (OFZ)-was observed. However, these reaction products were converted after the reaction time was doubled. The residual ecotoxicity was investigated using the Raphidocelis subcapitata microalgae and the marine bacteria Vibrio fischeri. The results for both microorganisms evidence that the residual solutions are less harmful to these microorganisms. However, after 30 min of reaction, the treated solution still presents a toxic effect for V. fischeri, meaning that longer reaction times are required to achieve an innocuous effluent.


Assuntos
Aliivibrio fischeri , Microalgas , Benzimidazóis , Fenbendazol , Humanos , Peróxido de Hidrogênio
2.
Water Sci Technol ; 82(3): 603-614, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32960803

RESUMO

This study presents a comparison of three methods for TiO2-N synthesis that were applied in the photocatalytic oxidation of the fluoroquinolones (FQs) ciprofloxacin, ofloxacin, and lomefloxacin in aqueous solution. The TiO2-N bandgap is small enough to allow the use of solar energy in the photocatalytic oxidation (PCO) reactions. The TiO2 doped by a sol-gel method with titanium butoxide (TiO2-N-BUT) and titanium isopropoxide (TiO2-N-PROP) as the precursor were effective as the TiO2 (P25) impregnation with urea (TiO2-N-P25) to degrade the FQs. The FQ degradation was higher by 74, 65, and 91%, respectively for TiO2-N-BUT, TiO2-N-PROP, and TiO2-N (load 50 mg L-1, 20 min of reaction under 28 W UV-ASolar). The TiO2-P25 with urea showed the best performance in FQ degradation. The reaction intermediates might present modifications in their acceptor groups by PCO and, because of that the antimicrobial activity dropped as the reaction time increased. Reactions with TiO2-N-P25 (100 mg L-1) and TiO2-N-BUT (100 mg L-1) achieved ≥ 80% of antimicrobial activity removal from the mixed FQ solution (Cciprofloxacin = 100 µg L-1; Cofloxacin = 100 µg L-1; Clomefloxacin = 100 µg L-1) after 40 min of reaction, for both for Escherichia coli and Bacillus subtilis.


Assuntos
Anti-Infecciosos , Titânio , Catálise , Fluoroquinolonas
3.
Water Sci Technol ; 78(8): 1668-1678, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30500791

RESUMO

In this study, a solution containing the fluoroquinolones (FQs) ciprofloxacin, lomefloxacin, and ofloxacin (antimicrobial agents) was subjected to photocatalytic oxidation under UVA irradiation, employing the commercial titanium dioxide as catalyst. On-line solid phase extraction coupled to ultra-high-performance liquid chromatography-mass spectroscopy was used to pre-concentrate and quantify the analytes. The process provided an almost 95% degradation efficiency for all the FQs. The TiO2 PC500 (100% anatase) was more efficient than TiO2 P25 (80% anatase) for FQs degradation. The matrix effect on the efficiency of the process was evaluated by ultrapure water - UW, simulated water - SW, bottled water -BW, and public drinking tap water - TW. Simulated water showed lower interference, compared to drinking water and bottled mineral water, due to the lower concentrations of hydroxyl radical scavengers. The assessment of the residual antimicrobial activity in the solution, when using 50 mg L-1 PC500 or 100 mg L-1 P25, showed reductions of biological activity (after 120 min of reaction) of 92.4% and 95.4% for Escherichia coli, and 78.1% and 84.2% for Bacillus subtilis, respectively. It shows that the photocatalytic oxidation process was able to not only degrade the FQs but also deactivate its biological activity in the resultant solution.


Assuntos
Anti-Infecciosos , Fluoroquinolonas/química , Titânio/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Catálise , Fluoroquinolonas/análise , Processos Fotoquímicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA